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Mortality as a Function of Survival

Jesús-Adrián Alvarez and James W. Vaupel

ABSTRACT  Everyone has a chronological age. Because survivorship declines relent­
lessly in populations with age-specific death rates greater than zero, everyone also 
has a survivorship age (“s-age”), the age at which a proportion s of the population is 
still alive. S-ages can be estimated for both periods and cohorts. While trajectories of 
mortality over chronological ages differ (e.g., across populations, over time, by sex, or 
by any subpopulation), mortality trajectories over s-ages are similar, a sign that pop
ulations experience similar mortality dynamics at specific levels of survivorship. We 
show that this important demographic regularity holds for 23 sex-specific populations 
analyzed during a period comprising more than 100 years.
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Introduction

Empirical research supports the view that human mortality is being postponed to later 
ages (Bongaarts and Feeney 2002; Canudas-Romo 2008; Kannisto 2000; Vaupel and 
Gowan 1986; Vaupel et al. 2021; Wilmoth and Horiuchi 1999). Popular sayings like 
“age 75 is the new 65” reflect the change in the relationship between mortality and the 
age variable (Burger et. al. 2012). Mortality postponement can be observed through 
changes in demographic indicators such as the mortality hazard µ(x), survival func
tion s(x), and density of deaths function f (x), occurring at any given chronological 
age x. Each of these indicators describes a specific characteristic of the mortality 
regime in a population. They are interrelated, and one can be expressed in terms of 
the other one. However, it is not clear how the postponement of mortality to older 
ages affects the relationship between these demographic indices.

For example, the survivorship function s(x, y) indicates the proportion of a popu­
lation still alive at age x and at year y . According to the 1910 life table for Swedish 
females (Human Mortality Database 2021), the survival function was .90 at age 5 (i.e., 
s(5,1910)  =  .90). In 2019, the survival function was .90 at age 70 (i.e., s(70,2019)
= .90). This simple comparison shows the magnitude of change in the relationship 
between survival and the age variable that has taken place over time. The question 
thus arises: was the risk of dying at age 5 in 1910 the same as the risk of dying at age 
70 in 2019, given that 90% of the population was still alive at both ages? In terms 
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of demographic functions:1 given that s(5,1910) = s(70,2019), might µ(5,1910) be 
similar to µ(70,2019)? What about any other proportion of survivors and any other 
population? This is a bold conjecture that we investigate in this article.

The groundbreaking study of Zuo et al. (2018) shed light on this issue. By ana­
lyzing percentiles in the distribution of deaths after age 65, they showed that old-
age deaths follow an advancing front, like a traveling wave. They demonstrated 
that (1) deaths occurring after the first quartile have been shifting toward older 
ages at a similar pace since 1950, and (2) the distance between age 65 and the 
first quartile has increased, whereas the distance between upper percentiles has 
remained constant over time. Findings from Zuo et al. (2018) provided new insights 
on the long-lasting debate about the compression or expansion of mortality at older 
ages (Bergeron-Boucher et  al. 2015; Kannisto 2000; Myers and Manton 1984; 
Nusselder and Mackenbach 1996; Thatcher et  al. 2010; Wilmoth and Horiuchi 
1999). They showed that conclusions about compression or dispersion of deaths 
are heavily driven by reliance on chronological age. Wilmoth and Horiuchi (1999), 
Canudas-Romo (2008), and Beltrán-Sánchez and Subramanian (2019) alluded to 
this, whereas Zuo et al. (2018) provided compelling evidence of shifting patterns in 
the age distribution of deaths.

Notwithstanding the relevance of the Zuo et. al. (2018) findings, their choice to 
start their analysis at age 65 by truncating the distribution of deaths at that age is prob
lematic. The selection of the onset age disregards the mortality dynamics at younger 
ages. Steady shifts in death percentiles start well before age 65 as there is evidence that 
major reductions in death rates have taken place at younger ages (e.g., Beltrán-Sánchez 
and Subramanian 2019; Bergeron-Boucher et al. 2015). Ages before and after 65 are 
both part of the same continuous process of aging. Therefore, truncating at chrono
logical ages could distort the signal and trigger misleading dynamics of demographic 
indicators.

Modeling Mortality as a Function of Survivorship

The use of percentiles as an alternative dimension in the analysis of mortality is not 
new and can be traced back to Paccaud et al. (1998), Wilmoth and Horuchi (1999), 
Kannisto (2000), and Wilmoth (2005), among others. In particular, Wilmoth (2005) 
introduced formal expressions of summary demographic measures such as life 
expectancy based on percentiles of the distribution of deaths. More recently, Beltrán- 
Sánchez and Subramanian (2019) used percentiles to examine trends in period and 
cohort mortality in high-income countries. An interesting application of this perspec­
tive can be found in the articles by Medford et al. (2019) and Alvarez et al. (2021a), 
in which they analyzed survival trajectories and health profiles of Danish centenar
ians in terms of percentiles. They showed that the life spans of the longest-lived 

1  The fact that s(5,1910) = s(70,2019) = .9 can also be seen as the result of the cumulative force of mortality  
adding up to the same values for ages 0 to 5 in 1910 and ages 0 to 70 in 2019. This is due to 
s(x, y) = e− µ (a, y) da0

x∫ . However, this fact does not necessarily imply that µ(5,1910) = µ(70,2019) are also 
identical since the shape of function µ(x, y) over the age variable x  can be very different for these two 
points in time (i.e., years 1950 and 2019).
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individuals have been lengthening across cohorts. Another relevant strand of research 
relates to the work done on formalizing mathematical relationships between demo
graphic functions. In this regard, Finkelstein and Vaupel (2009) provided formula­
tions to denote the survival function in terms of life expectancy, and Cohen (2010) 
showed that life expectancy is the death-weighted average of the reciprocal of the 
survival-specific force of mortality.

In this article, we develop a framework to study mortality in terms of survivorship 
ages (or s-ages) and examine sex-specific mortality dynamics in 23 populations from 
1900 to 2018. We start our analysis at birth to capture the entire continuous process 
of human aging. An extensive literature has shown that when mortality trajectories 
over chronological ages are compared (e.g., across populations or subpopulations, 
over time, or by sex), the curves differ. Here, we show that when such mortality tra
jectories over s-ages are compared, they are much more similar. Our key contribution 
is demonstrating that the main change over time has been the relationship between 
chronological age and human survival, whereas the relationship between survival and 
the risk of dying has remained more regular.

Survivorship Ages

Survival is customarily seen as a function s of age x. The survivorship function s(x) 
gives the proportion of a cohort still alive at age x. If the force of mortality, µ(x), 
is positive at all ages, then s(x) is monotonically decreasing, and therefore a one-to-
one function of x such that at every age x there is a unique value of s. Consequently, 
chronological age x can be seen as a function of survival s (Cohen 2010; Wilmoth 
2005). In this case, x(s) is the survivorship age or s-age such that x(s) = s−1(x) (i.e., 
the inverse of the survival function). Thus, x(s) indicates the age at which proportion 
s  of a person’s birth cohort is still alive, where x(1) is the s-age at which everyone is 
alive and x(0) denotes the s-age at which there are no survivors left in the population. 
Note that, from this perspective, x(s) is a function of s, whereas s denotes a scalar. 
Instead of taking chronological age as what varies over a lifetime, survival is what 
varies, and chronological age is a function of it.2

Function s(x)  is continuous and strictly decreasing over x. Therefore, the inverse 
function theorem (Leach 1961) gives the sufficient condition for x(s) to be continu­
ous and differentiable over s. This condition allows one to define the negative deriv
ative of x(s) with respect to s as

	 ψ(s) = − dx(s)
ds

. 	 (1)

2  This link could have been defined in terms of the cumulative distribution function, F(x), and the results 
would have been identical because s(x) = 1− F(x). Indeed, the use of F(x) leads to percentiles of the dis­
tribution of deaths used in Beltrán-Sánchez and Subramanian (2019), Wilmoth and Horiuchi (1999), and 
Zuo et al. (2018). In this study we chose to use s(x) because it is more intuitive to think about changes 
in mortality as the population dies out (i.e., as s goes from 1 to 0). Cohen (2010) pioneered this idea by 
expressing life expectancy in terms of the hazard of s.
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Function ψ(s) is the density function of s (Gilchrist 2000; Unnikrishnan Nair and 
Sankaran 2009; Unnikrishnan Nair et al. 2013), and it measures the distance between 
s-ages, x(s), as survivorship s falls from 1 to 0.

Provided that x(s) = s−1(x), the inverse function theorem guarantees that 
ds(x)
dx

= dx(s)
ds

⎛
⎝⎜

⎞
⎠⎟

−1

. Note that for any given survival function s(x), the corresponding 

density function is given by f (x) = − ds(x)
dx

. Hence,

	 f (x) = ψ(s)( )−1 . 	 (2)

Equation (2) indicates that if x(s) = s−1(x), the density functions f (x) and ψ(s) are 
also reciprocal.

By definition, the mortality hazard of x is µ(x) = f (x)
s(x)

. Thus, Eq. (2), and given 
that s(x(s)) = s, leads to

µ(x) = f (x)
s(x)

= 1
sψ(s)

= µ(s).

This indicates that the mortality hazard at survival level s can be expressed in terms 
of the density function ψ(s) as

	 µ(s) = (sψ(s))−1. 	 (3)

Function µ(s) has a meaningful demographic interpretation as it measures the risk 
of dying for the proportion s of the population that are still alive. This function is 
crucial in our study because it links mortality and survival without the influence of 
chronological ages.

It is important to highlight that µ(x) and µ(s) are both mortality hazards. The 
only difference between them is the domain where they operate. On one hand, haz
ard µ(x) is expressed in terms of chronological ages x . This means that the value of 
µ(x)  changes as x increases from 0 to ω. On the other hand, hazard µ(s)  is expressed 
in terms of survival level s, where s is a scalar. Thus, the value of µ(s) changes as s 
falls from 1 to 0.

Dynamics of the Risk of Dying in Terms of Survival

Assume that all the quantities defined in the previous section vary with respect to 
time y , such that ψ(s, y) and µ(s, y) are, respectively, the density function and the 
mortality hazard of s at time y. Changes over time in µ(s, y) are captured by the rate 
of mortality improvement, denoted by ρ(s, y):

	 ρ(s, y) = −

∂µ(s, y)
∂y

µ(s, y)
= − ∂lnµ(s, y)

∂y
. 	 (4)
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In this sense, ρ(s, y) measures how the risk of dying calculated at specific survival 
level s has changed over time.

Moreover, function b(s, y) indicates how the risk of dying changes as survival s 
decreases:

	 b(s, y) = −

∂µ(s, y)
∂s

µ(s, y)
= − ∂lnµ(s, y)

∂s
. 	 (5)

This function is analogous to the life table aging rate (Horiuchi and Coale 1990; 
Wilmoth and Horiuchi 1999), yet b(s, y) measures the relative mortality change over 
s rather than changes over chronological age x. For example, b(s, y) = .02 means that 
mortality (at level of survival s) is rising at an exponential rate of 2% at year y.

Further Developments and Applications

The framework introduced in this section offers a novel view on mortality dynamics 
and allows the reexpression of well-known demographic measures in terms of s-ages. 
Some of these applications are illustrated in the online appendix. For example, we 
derive expressions for life expectancy3 in terms of s-ages. In this case, life expectancy 
indicates the expected remaining lifetime of s survivors in a population. Similarly, 
other summary measures of longevity can also be conceived in terms of s-ages (e.g., 
life span variability indicators, or the entropy of x(s)).

Furthermore, functions x(s, y),  µ(s, y), ψ(s, y), ρ(s, y), and b(s, y) can also be 
expressed in terms of parametric models. To illustrate this, we assume that mortality 
follows a Gompertz model and develop closed-form expressions of these functions 
(see online appendix). We explore different model specifications to show how our 
framework can be used to gain new insights about well-known mortality models. 
Along the same lines, our framework allows us to develop novel stochastic models to 
forecast mortality as a function of survival.

It is important to highlight that the derivations shown in the appendix are solely 
for illustration purposes, whereas the aim of this article is to examine the empirical 
relationship between mortality and survival using the framework developed in this 
section. In the remainder of the article, we assess this relationship with data for 23 
sex-specific populations spanning the years 1900–2018.

Data

The framework introduced in the Survivorship Ages section is used to examine the 
relationship between mortality and survival using data by sex and calendar year cov
ering the period 1900–2018 for 23 populations available in the Human Mortality 
Database (2021): Australia, Austria, Belgium, Canada, Czech Republic, Denmark, 
Finland, France, Germany, Great Britain, Hong Kong, Italy, Israel, Japan, Korea,  

3  Such expressions complement Wilmoth (2005) and Cohen’s (2010) results.
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Luxembourg, the Netherlands, New Zealand, Norway, Portugal, Sweden, Switzerland,  
and the United States.

Continuous mortality quantities are required to calculate s-ages. For this rea­
son, raw death rates were smoothed over time and over age using two-dimensional 
P-splines (Camarda 2012). Given the nonparametric properties of such P-splines, we 
ensured that the smoothing procedure did not distort estimations of the risk of dying 
or any of the quantities analyzed here. Having continuous estimates of mortality over 
age and time permits calculation of s-ages and associated functions with serviceable 
precision. This standard smoothing procedure has been useful in previous mortality 
investigations (Colchero et al. 2016; Jones et al. 2014). Once continuous surfaces of 
mortality are computed, the calculation of x(s) and associated functions is straight­
forward using the expressions developed earlier.

Two sensitivity analyses were performed to test whether the results were driven 
by the choice of the smoothing algorithm (see online appendix). In the first analy
sis, a generic spline model (de Boor 2001) was used to smooth death rates by age. 
In the second sensitivity analysis, any smoothing algorithm was applied to the data. 
Instead, a linear interpolation was used to calculate s-percentiles and associated func
tions. In both analyses, our results are almost identical to the ones produced with 
P-splines (Camarda 2012), indicating that our results are robust and do not hinge on 
the smoothing algorithm employed.

Results

Figure 1 illustrates the location of s-ages in the survival function and the correspond­
ing force of mortality for Swedish females in 1950 and 2018. Function x(s) indicates 

Fig. 1  Survival function and associated risk of dying for Swedish females, 1950 and 2018. Red circles 
indicate the location of s-ages.
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the age at which survivorship is s, and µ(s) is the force of mortality at that specific 
survival level. We start the calculation of s-ages at birth, so that x(1) represents 100% 
of the population and it is always located at birth. We end the analysis at x(.01) 
because noise when survivorship falls under s = .01 is high. It is not possible to esti
mate the location of x(0) from aggregated data such that if there is a maximum life 
span ω, then x(0) = ω; otherwise x(0) = ∞. The values of x(s) and µ(s) are indicated 
in Figure 1 by the red circles.

Figure 1 shows that ages x(s) are not equidistant. For example, x(1) and x(.99) 
were very close to each other in 1950. In 2018, there is almost 40 years between 
x(1) and x(.99). Similarly, x(.99) and x(.98) are located less than 15 years apart in 
2018. Subsequent s-ages are closer to each other, indicating a greater concentration 
of deaths at those s-ages. Changes over time in the location of s-ages reflect changes 
over time in survivorship. The following sections describe changes over time in 
s-ages and how they trigger changes in the force of mortality.

The Steady Postponement of Survival

Figure 2 depicts trends in s-ages, x(s), from 1900 to 2018 for females in France, 
Italy, and Sweden. These countries were chosen to illustrate the framework because 
they exhibit high-quality data dating back to 1900. Nonetheless, similar results hold 
across all 23 populations analyzed in this study (see online appendix for further 
details).

Figure 2 shows that major shifts in survival occurred in the top s-ages. At the 
beginning of the twentieth century, 90% of the population (i.e., x(.90)) survived to 
age 2 in France and Italy and to age 5 in Sweden. Thereafter, deaths unfolded into 
a much wider age interval. For example, in 2018, 90% of the population in each of 
these countries survived to age 70. Even more impressive is that, in 2018, 99% of 
the population (i.e., x(.99)) survived to age 35. Figure 2 also shows that major shifts 
of s-ages from x(.99) to x(.80) produced a relocation in all subsequent x(s) . For 

Fig. 2  Survivorship ages for females in France, Italy, and Sweden, 1900–2018. Red lines indicate deciles.
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example, in France, x(.10) (i.e., the age where only 10% of the population is still 
alive) shifted from age 87.61 in 1950 to age 97.04 in 2018.

This figure also shows that distances between consecutive s-ages from x(.90) 
to x(.01)  have remained approximately constant over time, and this is particularly 
observed after the 1950s. Wilmoth and Horiuchi (1999) provided some evidence of 
parallel shifts in the concentration of deaths, and Zuo et al. (2018) analyzed this issue 
in depth after age 65. In the present study, we show that steady shifts in the concen
tration of deaths also hold for survival probabilities. We show that those steady shifts 
already begin at the age where 90% of individuals are still alive (i.e., s-age x(.90)), 
which is located well before age 65.

Our results show that the Zuo et al. (2018) findings regarding an increasing dis
tance between age 65 and the 25th percentile is the consequence of truncating the 
distribution of deaths at age 65. Sensitivity analyses in which calculation of s-ages 
starts at various chronological ages (e.g., x(1) is set at, respectively, ages 35, 50, and 
65; see online appendix) confirm that truncating at any chronological age distorts 
the distances between s-ages because they are compressed (Kannisto 2000; Thatcher  
et. al. 2010). Truncating at chronological ages triggers misleading results about 
demographic patterns of survival, the risk of dying, and associated functions of these 
indicators (i.e., life expectancy and life span inequality indicators).

The Constant Dynamics of the Risk of Dying

Panel a of Figure 3 shows the risk of dying over chronological age x for six different 
sex-specific populations during different years. Panel b also shows the risk of dying 
for the same populations, but in this case, the risk of dying is expressed in terms of s. 
As mentioned in the Survivorship Ages section, both hazards µ(x) and µ(s) are indica­
tors of the risk of dying and the only difference between them is the domain of x and s.  
In this sense, Figure 3 clearly shows the important finding that when trajectories  

Fig. 3  Mortality trajectories for six different sex-specific populations during different years. Panel a shows 
the risk of dying over chronological ages. Panel b depicts the risk of dying over survivorship ages. Black 
crosses indicate the location of s-age x(.80) . Note that these figures were calculated from raw data without 
smoothing to show the differences and similarities between mortality trajectories.
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of mortality over age x are compared, the curves differ, but when such trajectories 
over s are compared, they are similar. We now examine this finding in detail.

Figure 4 depicts trajectories over time in the risk of dying in terms of survivor­
ship over time, µ(s, y). Two key patterns are apparent. First, major shifts in s-ages .
reported in Figure 2 coincide with pronounced declines in µ(s, y) prior to the 1950s. 
In particular, µ(1, y) plummeted. Also note that µ(.99, y) declined substantially in the 
first half of the twentieth century but has since roughly stabilized (Ebeling 2018). 
Figure 4 shows that the relationship between the risk of dying and survival suffered 
distortions at the beginning of the survival curve (i.e., s = 1, .99, . . . , .90). Yet, after 
1980, declines in µ(s, y) ceased, with the exception of the risk of dying at birth, µ(1, y),  
which continues trending downward.

Second, Figure 4 shows steady patterns in µ(s, y) for s = .90, . . . , .01 since the 
1950s. The risk of dying for survival levels between .90 and .50 has remained almost 
constant over time after this decade. For survival levels between .50 and .01, there 
have been small increases in ρ(s, y). These patterns indicate a regular association 
between the risk of dying and survival. This is an important finding entailing that, 
over time, what has changed is the relationship between the age variable and survival 
(as shown in Figure 2), while the demographic relationship between survival and the 
risk of dying has remained stable for more than half a century.

Figure 5 depicts values of the rate of mortality improvement, ρ(s, y). As expected 
from the results shown in Figures 2 and 4, fluctuations in ρ(s, y) are noticeable prior 
to 1950. Such fluctuations can be attributed to deaths occurring during the two world 
wars and the Spanish flu epidemic (Johnson and Mueller 2002). Thereafter, ρ(s, y) 
takes values close to zero at all survivorship s. At first glance this finding might 
seem surprising, given that previous research has shown mortality improvements at 
different chronological ages (Rau et al. 2008). However, it is important to highlight 
that ρ(s, y) does not measure mortality improvement by chronological age. Instead, 
ρ(s, y) is an indicator that captures changes over time in mortality at different lev­
els of survival s. Thus, values of ρ(s, y) close to zero after the 1950s imply that the  

Fig. 4  Trends over time in risk of dying by s-age for females in France, Italy, and Sweden, 1900–2018. 
Red lines indicate deciles.
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relative change in mortality has remained more or less constant over time at any level 
of survivorship s below .90.

Finally, Figure 6 shows trends in the rate of aging, b(s, y). This function takes 
different values depending on s. For example, b(s, y)  for Sweden in 2018 was about 
.08 and .04 for s equal to .9 and .3, respectively. This indicates that the risk of dying 
increases faster when survival is 90% than when survival is 30%. Over time, fluctu
ations in b(s, y) are observed prior to the 1950s (similar to the results shown in pre
vious figures). After this decade, b(s, y) remains approximately constant over time, 
particularly for s below .70. For example, b(.10, y) for French females took values of 
.038 in 1950, .038 in 1970, .036 in 1990, and .037 in 2018. The analysis of function 
b(s, y) provides further evidence of the stable relationship between mortality and sur­
vival after the decade of the 1950s.

Fig. 6  Rate of change in the risk of dying with respect to change in survival s for both sexes in France, 
Italy, and Sweden, 1900–2018

Fig. 5  Rates of mortality improvement by s-age for both sexes in France, Italy, and Sweden, 1900–2018
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Discussion

Everyone has a chronological age x and, depending on the population they are in, 
a value of s. When trajectories of mortality over age x are compared (e.g., across 
populations, over time, or females vs. males), the curves differ. When mortality tra
jectories over s are compared, they are much more similar. This is an important demo
graphic regularity that holds for all 23 populations analyzed here.

In this study we show that during the first half of the twentieth century, major 
shifts in survival occurred at ages where the first 30% of the population die. It is 
also around those s-ages where most of the changes in the shape of the trajectory 
of mortality were observed. However, for the remaining 70% of the population, 
the relationship between survival and the risk of dying has remained steady over 
time.

This steady relationship is clearer after the 1950s, when 90% of the population has 
experienced similar mortality patterns. These findings indicate that, over time, what 
has changed is the relationship between mortality and chronological ages, but the 
relationship between survival and the risk of dying has remained remarkably regular. 
In other words, after the 1950s, populations have experienced similar dynamics in the 
risk of dying at levels of survivorship below .90.

The relationship between survival and the risk of dying is regular but it is not 
immutable. In our results for France, Sweden, and Italy, we show that this steady 
relationship was altered during some periods before 1950. Such alterations are asso
ciated with the massive number of deaths that occurred during the two world wars 
and the Spanish flu pandemic. After such events ceased, the relationship between 
demographic indicators became regular again.

Chronological Ages and Survivorship Ages

In this article, we introduce the concept of survivorship age with the purpose of 
examining mortality as a function of survival. It is worth emphasizing the concep
tual differences between s-ages and chronological ages as well as their demographic 
interpretation.

The chronological age of an individual is calculated as the time difference between 
two life events: birth and any given date. For example, the full life span is calculated 
between dates of birth and death. Therefore, the calculation of chronological ages 
requires information that is only related to that particular individual. Conversely, the 
calculation of s-ages entails additional information about the population in which the 
specific individual lives. This is because a person’s s-age is calculated as the time dif
ference from birth to the date at which a proportion s of the population was still alive.

At any specific date, every person has a unique chronological age, and because 
everyone lives in populations, every person also has a unique survivorship age. 
Chronological ages can be known exactly at any moment. However, survivorship 
ages can only be estimated using demographic data, which are usually gathered a 
posteriori. In other words, s-ages can only be calculated when demographic data 
become available. This is the main computational difference between these age indi­
cators, but at the same time, this is what makes s-ages demographically meaningful. 
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Contrary to chronological ages, s-ages relate a person’s life span to the dynamics of 
the population. All individuals will die in a specific population, and their mortality 
and survival chances do not exclusively depend on themselves, but also on the mor
tality and survival chances of their peers. This intrinsic relationship between an indi­
vidual life span and its own population is embedded in the definition of survivorship 
ages.

A key contribution of this article is the introduction of a formal framework to 
study mortality in terms of survivorship ages. As mentioned earlier, survivorship ages 
relate the life span of individuals to the actual source of demographic change, that 
is, death and survival. Therefore, this perspective is specifically developed for demo
graphic studies. Here, we show that the use of s-ages provides important insights 
about the dynamics of human mortality. Further research endeavors aimed at the 
development of mortality quantities and models (e.g., life span inequality indicators, 
stochastic models) in terms of s-ages will enrich the demographic toolkit and enhance 
our knowledge about further regularities in the mortality and survival of populations.

While we highlight the advantages of using survivorship ages in demographic 
studies, it is unlikely that they will replace chronological ages as the main time 
dimension. Chronological age has a long history of being used to quantify longevity 
(Thane 2020) and is widely used in social sciences as the main time variable with 
which to describe demographic events (Field and Syrrett 2020). Chronological ages 
are widely used as a time variable because of their simplicity and interpretability, and 
we acknowledge the advantages of using such ages in demographic research. None­
theless, we also highlight their shortcomings. Specifically, our results raise awareness 
about how truncating to chronological ages might result in misleading conclusions 
about the dynamics of the risk of dying and related indicators. An example of this 
issue is the increasing distance between the 25th percentile and age 65, reported in 
Zuo et al. (2018), which we show is an artifact of starting the demographic analy
sis at age 65, such that the postponement of human mortality is not fully captured. 
Researchers should therefore be cautious when truncating at chronological ages and 
be aware that the substantial postponement of mortality might affect their results.

Limitations

The empirical calculation of s-ages and related measures developed in this article 
requires continuous mortality quantities. Consequently, the application of our frame
work entails (1) the use of a smoothing or interpolation algorithm and (2) high-quality  
mortality data. Regarding the first condition, we show in the online appendix that the 
choice of the smoothing algorithm (e.g., P-splines, interpolation techniques) does not 
have an impact on our results. However, the use of high-quality demographic data 
plays an important role in the precise calculation of s-ages. We foresee this require­
ment to represent a limitation in the application of our framework, as not all popu
lations exhibit high-quality detailed data. This is the case for some Latin American 
populations (Alvarez et al. 2020), where data quality is poor and demographic esti
mations are unreliable. Furthermore, for some populations the life table data are only 
available in abridged age intervals (e.g., 5- or 10-year intervals). The use of grouped 
data might result in unreliable estimations of s-ages and related measures. A possible 
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approach to tackle this issue is to apply nonparametric models to ungroup binned data 
(Rizzi et al. 2015) before the calculation of s-ages.

In the online appendix we illustrate the potential of our framework by introducing 
closed formulas to compute s-ages and related measures under the assumption that 
mortality follows a Gompertz distribution. We chose this distribution for its simplic
ity and because it is a well-known referent in mortality modeling. While parametric 
formulas for x(s), ψ(s),  and µ(s)  are sound for this distribution, they might not fit 
well when tested with empirical data. It has been shown that the Gompertz distri
bution describes only a specific chronological age range. For example, it does not 
describe mortality patterns at young ages and does not capture the age hump (Remund 
et al. 2018). It has also been shown that µ(x)  deviates from the Gompertzian pat
tern around ages 70–80 (Wilmoth and Horiuchi 1999) and converges toward a con­
stant level at the extreme end of life (Alvarez et  al. 2021b). Models that account 
for unobserved heterogeneity (Beard 1959; Vaupel et  al. 1979) can be considered 
as an alternative to model mortality at old s-ages. Furthermore, the application of 
our framework to parametric distributions that cover the whole age range (e.g., Siler 
1979; Thiele 1871) might provide a more thorough description of the trajectory of 
mortality over the whole s-age range.

Unsolved Demographic Questions

Our results shed light on the demographic mechanisms of senescence. We show that 
the relative rate of change in the force of mortality, b(s, y), is approximately constant 
over time—in particular, after the 1950s and for levels of s below .7. This indicates 
that populations experience similar dynamics in the risk of dying at specific levels 
of survivorship. Why? What is the source of this regularity? This is a basic research 
question that remains unsolved. One possible explanation, which requires further 
analysis, is that a person’s s-age appears to be a good measure of a person’s health, 
more closely tied to the risk of death than chronological age.

As described by Zuo et al. (2018) and further analyzed here, there is an advancing 
front of survival. Theories of senescence (e.g., Baudisch and Vaupel 2012; Colchero 
et al. 2021, 2016; Le Bourg 2001; Omholt and Kirkwood 2021; Wachter et al. 2014) 
attempt to explain why the risk of death increases with age. Analyzing mortality as 
a function of survivorship might cast new theoretical light on how rapidly we age 
and why death rates are falling over time. Beyond this, s-age will almost certainly 
augment chronological age as a powerful concept in the demographic analysis of 
mortality. ■
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