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A Unified Model of Cohort Mortality
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ABSTRACT We pro pose a dynamic pro duc tion func tion of pop u la tion health and mor
talityfrombirthonward.Ourparsimoniousmodelprovidesanexcellentfitforthe
mor tal ity and sur vival curves for pri mate and human pop u la tions since 1816. The 
model sheds light on the dynam ics behind many phe nom ena documented in the lit er a
ture. Simple exten sions of the model can repro duce (1) the exis tence and evo lu tion of 
mor tal ity gra di ents across socio eco nomic sta tuses documented in the lit er a ture, (2) non
monotonic dynamic effects of in utero shocks, (3) per sis tent or scar ring effects of wars, 
and (4) mor tal ity dis place ment after large tem po rary shocks, such as extreme weather.
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Introduction

We pro pose a coher ent frame work to under stand how pop u la tion health and mor
tal ity evolve from birth onward and how eco nomic and other envi ron men tal fac tors 
through out life affect this evo lu tion. Statistical and eco nomic mod els of health and 
mor tal ity typ i cally con cen trate on adults. Yet, a large lit er a ture has documented that 
events and invest ments in utero and through out child hood are pow er ful pre dic tors 
of laterlife eco nomic and health out comes (Almond and Currie 2011; Almond et al. 
2018).Intheabsenceofsuchaquantitativemodel,itisdifficulttopredicthowshocks
will affect pop u la tion health at var i ous ages, and it is even harder to design opti mal 
invest ment or com pen sa tion pol i cies.

We pres ent a sim ple dynamic model of the pro duc tion of health from birth to death 
for a het ero ge neous pop u la tion. In the spirit of clas sic demo graphic work (Vaupel 
et al. 1979), some indi vid u als are born frailer than oth ers. Subsequently, the dis tri bu
tion among sur vi vors evolves according to a sim ple law of motion that depends on 
the level of exter nal resources, which are sto chas tic. As in Grossman’s (1972) clas sic 
work on the pro duc tion of health, an indi vid ual’s health dete ri o rates with age but can 
increase with invest ments. At any age, indi vid u als in poor health die. In addi tion, 
indi vid u als die from rea sons unre lated to their health sta tus. During the ado les cent 
years, these exter nal causes of death account for a large por tion of deaths.

We esti mate this model sep a rately for more than 100 birth cohorts born since 
1816, using highqual ity data from the Human Mortality Database (2017). Despite 
sub stan tial changes in life expec tancy through out the period, the model pro vi des an 
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excellentcharacterizationofthemortalityageprofilesforeachcohortandisconsis
tentwithtwostylizedfacts:(1)theprofileoflogmortalityratesbyagehasaJshape;
and (2) sur vival curves for humans have rectangularized over the last two cen tu ries, 
flatteningthroughoutlifeanddroppingabruptlyatolderages.

We then show that sim ple exten sions of the model can gen er ate other pre vi ously 
documentedphenomena.Specifically,weshowthat(1)changesinlifetimeresources
gen er ate socio eco nomic sta tus (SES) gra di ents (per sis tent gaps in log mor tal ity rates 
across pop u la tions with dif fer ent SES) that fall with age; (2) in utero insults result in 
nonmonotonic impacts on health and mor tal ity over the life time; (3) shortterm neg a tive 
shocks (e.g., wars) that tem po rar ily lower resources result in scar ring (ele vated mor tal ity 
of sur vi vors); and (4) envi ron men tal shocks (e.g., hot weather) that affect the thresh old 
for dying lead to harvesting (tem po rar ily ele vated mor tal ity followed by tem po rar ily 
lower mor tal ity). The model also describes the evo lu tion of chim pan zee mor tal ity well.

The evo lu tion of mor tal ity over the life time is, in fact, remark ably sim i lar across 
human pop u la tions and across most pri ma tes. Because of this reg u lar ity, demog ra
phershavesearchedfora“unified”modelofmortalitythatwouldpredictmortality
from birth to death at least since the early nineteenth cen tury (Carnes et al. 1996). 
Like much of the lit er a ture that followed (e.g., Li and Anderson 2013), Gompertz’s 
(1825) model accounts for mor tal ity only after a cer tain age, focus ing on the roughly 
loglin ear por tion of the mor tal ity curve after age 40. There are a few excep tions. 
A pop u lar model by Heligman and Pollard (1980) fits period datamortality rates
from var i ous con texts remark ably well. More recent demo graphic mod els describe 
aggre gate mor tal ity rates as a func tion of var i ous param e ters, albeit with dif fer ent 
objec tives: Sharrow and Anderson (2016) decomposed the gains in lon gev ity into 
intrin sic and extrin sic deaths, whereas Palloni and BeltránSánchez (2017) sim u lated 
the effects of child hood frailty on mor tal ity through out life.

Ourfirstcontributiontotheliterature(reviewedindetailinonlineappendixB)is
to pro vide a new model of cohort mor tal ity. Our approach dif fers in one fun da men tal 
aspect from the demo graphic approach just described. As in the sem i nal Grossman 
(1972) model, we model directly how the health stock of each indi vid ual evolves, rather 
than mod el ing the mor tal ity or sur vival rates of only the aggre gate pop u la tion. Like 
Sharrow and Anderson (2016), we decom pose mor tal ity into two sep a rate causes of 
death: extrin sic and intrin sic. Like Palloni and BeltránSánchez (2017), we use our 
model to study the effects of frailty. Our model accomplishes both aims within the same 
frameworkwhileachievingagreatfitlikeHeligmanandPollard’s(1980) model does.

The second contribution of this paper is to show that simplemodifications of
this base line model account for a wide range of existing demo graphic phe nom ena. 
We dem on strate this by study ing the effects of increas ing life time resources and 
the impact of neg a tive in utero shocks on a pop u la tion’s sub se quent aver age health 
and mor tal ity. We also study the effects of tem po rary shocks, such as wars and bad 
weather.Toourknowledge,noothermodelbothprovidesanexcellentfittothecohort
data and can also explain the vari ety of phe nom ena we study.

Our model pro vi des a frame work that bridges the demo graphic and eco nomic 
approaches: we model indi vid ual health as econ o mists do, but we study its aggre gate 
impli ca tions for pop u la tion mor tal ity in the tra di tion of demo graphic stud ies. Our 
model is more par si mo ni ous than Grossman’s (1972) clas sic work or its most recent 
suc ces sors in the eco nom ics lit er a ture (Dalgaard and Strulik 2014; Galama and van 
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2111A Unified Model of Cohort Mortality

Kippersluis 2019). These more com plex mod els were devel oped to under stand health 
expen di tures and health behav iors. We focus only on a pro duc tion pro cess and are 
silent about max i miz ing behav ior, at least ini tially.

Our main inno va tion rel a tive to eco nomic mod els is to include child hood. Alter
native stateoftheart mod els, such as Dalgaard and Strulik’s (2014) accu mu lat ing 
health deficitsmodel orGalama and vanKippersluis’s (2019) the ory of SES and 
 mor tal ity, start with adults. A recent model by Dalgaard et al. (2021) includes child
hood, but it does so by adding a sep a rate health pro duc tion func tion for child hood. 
Instead, our frame work describes aging from birth to death with a unique law of 
motion, where mor tal ity declines dur ing child hood owing to both selec tion and 
investments.We also demonstrate that our model fits mortality curves for entire
cohorts well, which eco nomic mod els have not dem on strated.

Stylized Facts: Health and Mortality Over the Lifetime

Mortality

We study the evo lu tion of mor tal ity for a given cohort using data from the Human 
Mortality Database (HMD; 2017). The HMD pro vi des pop u la tion and death counts 
by age, birth year, and gen der col lected through vital reg is tra tion sys tems (birth and 
deathcertificates)andcensuses from1816 to2015.Despitea few limitations, the
HMD is the highest qual ity data avail  able for cohort anal y sis. We com pute mor tal ity 
rates by age for each cohort as the num ber of deaths divided by the pop u la tion at that 
age, and we use these rates to com pute sur vival rates and life expec tancy (see online 
appen dix D). We focus on French cohorts for two rea sons: these cohorts are large, and 
the data extend back to 1816.

We study cohort mor tal ity rates, which are used more often than period rates. 
In a sta tion ary envi ron ment, with sta ble mor tal ity rates by age over time, the two 
are very close, but they diverge oth er wise. The evo lu tion of period and cohort life 
expec tancy at birth by gen der in France is sum ma rized in Figure A10 (this and all  
otherfiguresandtablesdesignatedwithan“A”areshownintheonlineappendix).1 
For the 1816–1860 cohorts, (cohort and period) life expec tancy at birth was sta ble 
at approx i ma tely age 40 for females and age 39 for males. However, life expec tancy 
increased in the late nineteenth cen tury, with cohort life expec tancy ris ing more than 
period life expec tancy. Several cohorts of men (born in roughly 1880–1900) expe ri
enced declines in life expec tancy, likely as a result of World War I and World War II. 
Among those born around 1920, females and males lived approx i ma tely 69 and 59 
years, respec tively—sub stan tially lon ger than cohorts born a cen tury ear lier.

Figure 1 shows the log a rithm of mor tal ity rates by age for selected birth cohorts 
of women born between 1860 and 1940. Results for var i ous Euro pean countries are 
shown in panel a, and results for France are shown in panel b. Although the level of 

1 Period life expec tancy is com puted using the crosssec tional mor tal ity rates of all  cohorts alive in a year, 
whereas cohort life expec tancy is com puted using a cohort’s real ized mor tal ity rates. For exam ple, 1850 
period life expec tancy uses the observed mor tal ity rates of 70yearolds in 1850. But when 1850 cohort life 
expec tancy is com puted, the mor tal ity rates at age 70 are those observed in 1920.
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2112 A. Lleras-Muney and F. Moreau

mor tal ity changed sub stan tially over time, the basic evo lu tion of mor tal ity rates by 
age is sim i lar across many countries and peri ods.

For a given cohort, the log a rithm of mor tal ity has the shape of a check mark: 
high at birth, low among the young, and high and ris ing almost lin e arly with age in 
adulthood.Mortality curves also display an “adolescent hump,” especially visible
for cohorts born in the nineteenth cen tury: starting in ado les cence, mor tal ity rates 
increase rap idly (Preston et al. 2000; Thiele 1871). Finally, spikes are evi dent for 
some cohorts, cor re spond ing to wars and epi dem ics. These pat terns are more vis i ble 
when exam in ing all  the cohort curves, which are sim i lar but not iden ti cal for men (see 
Figures A11 and A12). These pat terns are not unique to humans. Bronikowski et al. 
(2011) used lon gi tu di nal data from pri ma tes liv ing in the wild and showed that these 
mor tal ity pat terns are sim i lar across all  pri ma tes.

Health

TheWorldHealthOrganizationdefineshealthas“astateofcompletephysical,men
talandsocialwellbeingandnotmerelytheabsenceofdiseaseandinfirmity.”2 Thus, 

2 See https:  /  /www  .who  .int  /about  /governance  /constitution.
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Fig. 1 Cohort mortality rates for selected European cohorts born in 1860–1940. Data are from the Human 
Mortality Database (2017). Panel a shows the log10 of the mortality rates, by age, for women born in 1860 
and in 1940 in six European countries (Belgium, Denmark, the Netherlands, Sweden, France, and  Norway). 
Panel b shows the mortality rates for women born in France in 1860, 1880, 1900, 1920, and 1940.
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2113A Unified Model of Cohort Mortality

health is a mul ti di men sional con cept that is not eas ily cap tured by any sin gle met ric, 
but par tial mea sures are avail  able. A strik ing empir i cal pat tern is that the dis tri bu tion 
of var i ous health indi ca tors observed at dif fer ent ages is roughly Gauss ian. For exam
ple, the dis tri bu tion of birth weights is nor mal (Wilcox and Russell 1983), and so is 
the dis tri bu tion of adult heights (Tanner 1981).

How does the dis tri bu tion of health evolve with age? Unfortunately, the HMD 
does not con tain any health mea sures. In fact, we are not aware of any data that track 
a con sis tent mea sure of health from birth to death for a given cohort. But sev eral stud
ies pro vide par tial descrip tions of this evo lu tion. Mean health increases and then falls 
with age, peaking some time in young adult hood. Biological func tions, such as mus
cle mass (Metter et al. 1999),bonemass(BaxterJonesetal.2011), and per for mance 
in phys i cal and cog ni tive tasks (Allen and Hopkins 2015; Strittmatter et al. 2020), 
peak some time between ages 20 and 35. Selfreported mea sures of health, which cap
ture over all health, decline in adult hood (Case and Deaton 2005; Deaton and Paxson 
1998; Halliday et al. 2018; Kaestner et al. 2020).

The var i ance in health also rises with age and then seems to level off or fall among 
the oldest, although the data are less clear about what hap pens among the oldest 
(Deaton and Paxson 1998; Halliday et al. 2019; Halliday 2011). The var i ance in organ 
func tion also rises with age (Steves et al. 2012). Lastly, both objec tive mea sures of 
health and sub jec tive over all mea sures of health are strong pre dic tors of mor tal ity 
(Benyamini and Idler 1999; McGee et al. 1999).

A Unified Model of Aging and Mortality

In this sec tion, we pres ent a sim ple model that can account for these basic styl ized 
facts about health and mor tal ity.

Individuals are born with an ini tial health endow ment, H0, that dif fers across indi
vid u als in the pop u la tion and has an unknown dis tri bu tion.3 Every period, the envi
ron ment pro vi des resources (I ) to all  indi vid u als, which increase health (H ). In this 
basic model (and in con trast to Grossman’s), indi vid u als have no con trol over their 
resources. In addi tion, indi vid u als in the same envi ron ment are more or less lucky 
and expe ri ence an idi o syn cratic shock (εa ) to their resources. For exam ple, I  char
ac ter izes the per cap ita amount of food that a coun try pro duces, but a given per son 
might receive less if, for instance, rain fall was unusu ally low in their loca tion. The 
var i ance of εa  cap tures how unequal the dis tri bu tion of resources is. These idi o syn
cratic shocks are assumed to be inde pen dent and iden ti cally dis trib uted every period.

Finally, the health stock depre ci ates each period by an amount d(a), which 
increases with age a (d ′ (a) >0).Thisagingprocess reflects“theaccumulationof
ran dom dam age to the build ing blocks of life—espe cially to DNA, cer tain pro teins, 
car bo hy drates, and lip ids (fats)—that begins early in life and even tu ally exceeds the 

3 Although health is mul ti di men sional, we use a sin gle index, as in Grossman (1972). This health mea
surecanbeviewedasasufficientstatisticforalargercollectionofhealthindicators(e.g.,vascular,brain
func tions), each fol low ing a dif fer ent law of motion. Alternatively, one could model var i ous health dimen
sions and how each affects the prob a bil ity of dying, as in engi neer ing mod els of aging or com pet ingrisks 
mod els.
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2114 A. Lleras-Muney and F. Moreau

body’sselfrepaircapabilities”(Olshanskyetal.2002:93). These forces deter mine 
the evo lu tion of the health stock, which is an unob served latent var i able.

Individuals die when their stock of health dips below a thresh old H ,whichisfixed
through out the life time and iden ti cal for all  indi vid u als. (This assump tion that over
all health pre dicts mor tal ity is con sis tent with empir i cal obser va tions: for exam ple, 
selfreported heath and objec tive mea sures of health both pre dict mor tal ity (Ganna and 
Ingelsson 2015; Idler and Benyamini 1997).) Let Da = I Ha ≤ H ,Da  −  1 = 0( ) denote  
the ran dom var i able equal to 1 if the indi vid ual dies at age a. Then, the pop u la tion’s 
health and mor tal ity are char ac ter ized by the fol low ing dynamic sys tem:

 

Ha = Ha  − 1 − d a( )+ I + εa  if Da  − 1 = 0

Da = I Ha ≤ H ,Da  − 1 = 0( )
D0 = 0,

⎧

⎨
⎪⎪

⎩
⎪
⎪

with I ∈R. Note that if Da = 1, then Haisundefined;individuals’healthisnotobserved
after they die. But we observe the mor tal ity rate for the pop u la tion at age a, which 
is given by MRa = P Da = 1|Ds = 0,∀s < a( ). Thus, the dis tri bu tion of health and the 
mor tal ity rate at any age are func tions of the entire his tory of shocks and invest
ments. We make three key para met ric assump tions to make the model more trac ta ble 
and con sis tent with the empir i cal evi dence above. First, H0 fol lows a nor mal dis tri
bu tion N µH ,σ2( ). Second, shocks to resources every period also fol low a nor mal 
 dis tri bu tion, εa ~ N 0,σ2( ).4 Third, depre ci a tion is a power func tion, d a( ) = δaα with 
δ ∈ 0,∞( ), α ∈ 0,∞( ).5 This aging pro cess starts slowly at birth, con sis tent with evi
dence that aging mark ers dete ri o rate among chil dren (Wong et al. 2010). It increases 
rap idly with age among adults, as in bio log i cal mod els of senes cence (Armitage and 
Doll 1954; Pompei and Wilson 2002).6

Figure 2 illustrates the evolution of health andmortality in the first two peri
ods. Initially, the health dis tri bu tion is nor mal. Then it shifts to the right dur ing the 
firstperiodaslongasI is pos i tive (and larger than the aging term) and spreads out 
(because of the sto chas tic shock, εa). Individuals who were born too frail or expe ri
enced large neg a tive shocks move to the left of the thresh old and die. Graphically, 
theinfantmortalityrate(thefractionofindividualswhodieinthefirstperiod)cor
re sponds to the area under the dashed red curve below the thresh old. In the sec ond 
period, this trun cated dis tri bu tion moves right again (if I is large rel a tive to d(1)), and 
the pop u la tion receives a new shock, gen er at ing mor tal ity again among those with 
large neg a tive shocks.

4 The model can accom mo date other dis tri bu tions, but sim u la tions with alter na tive assump tions (e.g., log 
normalerrors)resultedincounterfactualmortalityratesandapooreroverallfit.
5 Ourestimatesforhumanpopulationsfindthatα  > 1. The depre ci a tion is there fore con vex in age. Many 

empir i cal stud ies in ger on tol ogy have focused on the rate of aging, which cor re sponds to αH
H

=
−d a( )
H

 

in our model. As in those stud ies and con sis tent with Dalgaard et al. (2019),wefindthatindividualswith
lower health lev els age faster.
6 See Gavrilov and Gavrilova (1991) and Weibull (1951) for attempts at bio log i cal microfoundations 
draw ing on reli abil ity the ory from engi neer ing.
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The sto chas tic term εa  there fore plays a key role. In its absence, there would be no 
deaths in Period 2 or any sub se quent period until the depre ci a tion term becomes large 
enough to push the leftmost part of the dis tri bu tion below the thresh old.7 Thereafter, 
mor tal ity increases every period. Eventually every one dies, which we prove more 
for mally in online appen dix C.

This basic model matches the styl ized pat terns described ear lier. Figure 3 shows 
the evo lu tion of the health dis tri bu tion and the resulting mor tal ity over the life time. 
Justliketheirempiricalcounterparts,cohortsinourmodelexhibitthefollowingpat
terns: (1) the health dis tri bu tion is roughly nor mal at most ages; (2) mean pop u la tion 
healthfirstincreasesandthenfallswithage;(3)thevarianceofhealthfirstincreases
andthenfallswithage;and(4)mortalityfirstfallsandthenrisesataroughlylog 
lin ear rate after mid dle age. There is only one data fea ture we have not accounted for: 
the increase in mor tal ity around ado les cence.

Not all  deaths have direct bio log i cal causes. Many deaths, such as acci dents or 
homi cides, strike indi vid u als regard less of their health sta tus. These extrin sic causes 
of death can be inte grated into the model through the addi tion of an inde pen dent and 
iden ti cally dis trib uted acci dent shock that is inde pen dent of the stock of health, Ha .. 
Then, a con stant frac tion κ ∈ [0,1] of the pop u la tion is ran domly killed every period. 

7 If I  is less than aging, then one could gen er ate pos i tive mor tal ity in the sec ond period with out a  sto chas tic 
term. However, mor tal ity would then rise from age 2 onward, which we do not observe in the data.
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Fig. 2 Healthandmortalityinthefirsttwoyearsoflife.Dataarefromsimulations.Thefigureshowsthe
evolutionofthehealthdistributioninthefirsttwoperiodsoflifeinapopulationwhereI exceeds the force 
of aging (δaα)inthefirsttwoperiods.
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2116 A. Lleras-Muney and F. Moreau

This randomaccident rateplaces aflooron the levelofmortality that is constant
across ages.8

Panel a of Figure 4 shows that adding a life time acci dent shock increases the mor
tal ity level at all  ages but does not change its basic evo lu tion. Adding mor tal ity from 

8 If all  healthrelated deaths were elim i nated, this acci dent rate would uniquely deter mine the life 
 expec tancy of the pop u la tion (1 / κ ).
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Fig. 3 Model behavior. Simulated data for a population of 500,000 individuals and without an adolescent 
hump. For this simulation, we use the following parameters: I = 0.3575753, δ =0.0004789, σ =0.8353752, 
α =1.7883, and µ0 = 0.925079. Panel a shows the density of health for the population at ages 1, 40, and 90. 
Panel b plots average health, the variance of health, and mortality rates for the population over the lifetime, 
without external causes of death.
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Fig. 4 Adding accidents to the baseline model. Panel a shows the evolution of mortality based on a sim
ulation that uses the same baseline parameters as in Figure 3. The green dashed line shows the mortality 
curve without any accidents (κ = 0). The red dotted line shows the mortality curve of a population that 
experiences a κ = 0.004% chance of dying every period as a result of an accident, unrelated to health. The 
blue line shows the model that assumes the accident rate is 0 at birth but jumps to 0.004 in adolescence. 
Mortality rates are higher as a result of external deaths but more so among young adults because of com
peting risks: older individuals who experience an accident shock are also unhealthy and would die even 
in the absence of an accident shock. Panel b is reproduced from Schwandt and von Wachter (2020), who 
generously agreed to its use. The data come from period (not cohort) tables, so they are not directly com
parable to ours. However, we use these data to demonstrate that the mortality rate from nondiseaserelated 
causes of death is well approximated by a step function that starts in adolescence. Mortality rates are shown 
in log10 scale.
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2118 A. Lleras-Muney and F. Moreau

acci dents also does not affect the health dis tri bu tion among the liv ing because these 
deaths are ran dom and do not depend on health sta tus.

Contemporary data, how ever, show that the mor tal ity rate from exter nal causes 
of death is not con stant through out life. Instead, it is well approx i mated by a step 
func tion, with a major increase around ado les cence (Figure 4, panel b). Among the 
young (ages 15–24), more than 80% of deaths are due to exter nal deaths (Centers for 
Disease Control and Prevention 2019). On the basis of this evi dence, we assume that 
κ starts at 0 but becomes pos i tive in ado les cence at an arbi trary age (a*); we there fore 
add two more param e ters to the model. For sim plic ity, we assume that the onset of 
ado les cence is unaf fected by health lev els, and we take it to be exog e nous.9 Panel a 
of Figure 4showsthataddingthisstepfunctionresultsinaprofileofmortalitythat
qual i ta tively matches the main fea tures we observe.10

Explaining Mortality Patterns

We now assess whether the model can quan ti ta tively match observed mor tal ity pat
terns.To do so,we estimate themodel parameters and assess themodel’s fit for
both human and pri mate cohorts. We then com pare our model to other demo graphic 
mod els.

Identification and Estimation

Identification

Twoofthenineparametersofthefullmodelcannotbeidentified.Toseethis,note
that we can add or sub tract any con stant on both sides of the expres sion that deter
mines the prob a bil ity of dying, Da = I Ha ≤ H ,Da−1 = 0( ), and leave the mor tal ity 
rates at all  ages unchanged. Thus, we must nor mal ize either the level of ini tial health 
(µ) or the thresh old (H ). Similarly, we can mul ti ply each side of the equa tion by any 
pos i tive con stant and leave the prob a bil ity of dying unchanged. Therefore, the scale 
of at least one var i able must also be nor mal ized. Without loss of gen er al ity, we set 
H  = 0 and σH  = 1. After nor mal i za tion, all  the param e ters are expressed in stan dard 
devi a tion units (except for α and κ, which are scalefree—they do not depend on  
the ini tial dis tri bu tion). For exam ple, we inter pret µH  as the dis tance from the 
thresh old of the ini tial dis tri bu tion, mea sured in stan dard devi a tions of the ini tial 
dis tri bu tion.

The rescaled model char ac ter izes the bio log i cal evo lu tion of health and mor tal
ity of a cohort using seven (rescaled) param e ters: one for the mean ini tial health 

9 This assump tion could be relaxed. The onset of men ar che, a proxy for ado les cence in women, has 
declined from approx i ma tely age 16 to age 12 in the last two cen tu ries. This devel op ment has been linked 
to nutri tional changes and might be a func tion of health.
10 Theshapesinthetwofiguresarenotidentical.However,thecontemporarydataareperioddata,not
cohortdata. In contemporary settings, the twoprofilesdiffer substantially.Unfortunately,nohistorical
cohort mor tal ity series by cause of death is avail  able.
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2119A Unified Model of Cohort Mortality

(µH), two governing the aging pro cess (δ, α), two char ac ter iz ing the effects 
of resources in the form of aver age invest ments ( I ) and the var i ance of these 
 invest ments (σ2), and two cap tur ing the acci dent rate (κ) that starts in ado les cence 
at age a*. We do not esti mate this last param e ter. We assume that women’s ado
les cence begins at the age at men ar che, cal cu lated as (−0.0175 × cal en dar year) 
+47.4. This equa tion was esti mated by de La Rochebrochard (2000) using his tor
i cal data from mul ti ple sources. Adolescence is assumed to start one year later 
for men, as observed in con tem po rary set tings. For chim pan zees, we draw on the 
lit er a ture to iden tify two alter na tive starting ages: 8 (Behringer et al. 2014) and 14 
(Bronikowski et al. 2011).

Estimation

Despite the model’s con cep tual sim plic ity, the mor tal ity rate at a given age can not be 
expressed in closed form. We there fore esti mate the param e ters using the sim u lated 
method of moments: we gen er ate data for a pop u la tion and com pare the resulting 
sur vival curve to the actual sur vival curve. The pro gram iter ates over the param e ter 
space until the dif fer ence between the sim u lated and actual data is min i mized. By 
matching the agespecific survival rates,we implicitlymatch life expectancy.See
online appen dix D for details.

Mortality Rates Over the Lifetime

We start by esti mat ing the model for women born in 1816. The model closely matches 
their mor tal ity rates at every age (Figure 5, panel a). The predicted life expec tancy is 
38 years and 102 days, and the actual life expec tancy is 38 years and 91 days.

We esti mate ini tial mean health to be 0.86, so many indi vid u als are born at or 
belowthethreshold(TableA1).Absentanyshocksorinvestmentinthefirstperiod,
infant mor tal ity would have been roughly 15% (instead of 17%). Mortality falls 
 dra mat i cally after age 1 because of selec tion (many frail indi vid u als have already 
died)andbecauseinvestmentislargerelativetoaginginthefirstperiod(I is esti
mated as 0.4, and δ is esti mated as 0.0006).11

The esti mated var i ance of resources is large (∼1), so a few unlucky indi vid u als 
still fall below the death thresh old after age 2. Log mor tal ity starts to increase steadily 
after age 45. This grad ual increase occurs because δ is small (∼0.0006), but the aging 
rate (α) is approx i ma tely 1.8, and the aging func tion δaα thus increases more than 
lin e arly with age.

Accountingforexternaldeathsisimportant:thefitofthemodelimprovessignifi
cantly, and the esti mated param e ters change (com pare col umns 1 and 2 of Table A1). 
The exter nal mor tal ity rate is 8.6 per thou sand per year, low er ing this cohort’s life 
expec tancy by approx i ma tely 7.6 years. This num ber is an upperbound esti mate of 

11 Health invest ments (I) are not tech ni cally needed to gen er ate declin ing mor tal ity in child hood.
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2120 A. Lleras-Muney and F. Moreau

the effect of mater nal mor tal ity—the main cause of death for women in the nineteenth 
cen tury—on life expec tancy in the past.

Theseresultsarerobusttoseveralalternativeestimationmodifications,including
using alter na tive weights, using an alter na tive objec tive func tion, and allowing for 
trun ca tion at age 90. We also esti mate mod els in which the onset of ado les cence is 
normally dis trib uted and esti mated. These results (displayed in Table A2) show that 
thefitisnotverysensitivetothesealternatives.
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Fig. 5 Evolution of survival for French females born in 1816–1940. Panel a shows the observed mortality 
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2121A Unified Model of Cohort Mortality

Gender Differences

Figure A13 (panel a) shows the results for males born in 1816 (Table A1 reports the 
esti mated param e ters). Men born in 1816 had shorter lives than women. After account
ing for the adolescent hump, which substantially improves the fit (column 4), we
findthatinitialmeanhealthis18%lowerformalesthanforfemales,consistentwith
males’ greater frailty and higher infant mor tal ity rates (Cullen et al. 2016; Goldin and 
LlerasMuney 2019). Males receive slightly larger annual invest ments (about 10% 
greater) but expe ri ence greater var i ance in invest ments (5%). They also age faster in 
old age (although women age a bit faster dur ing prime ages). The increase in deaths in 
 ado les cence is larger for men (κ = 0.0097), con sis tent with their greater involve ment 
in  acci dents and vio lent deaths. However, because males have higher over all mor tal
ity rates, the elim i na tion of acci den tal deaths would increase their life expec tancy by 
approx i ma tely 7.6 years, sim i lar to the predicted gains for women. Overall, the model 
fitisexcellentforbothgenders,althoughthefitisbetterforfemales.Further,allparam
etersexceptformeaninvestmentsbenefitwomen’ssurvival.

Primates

Our model should describe mor tal ity for non hu man pri ma tes well: they live in 
 rel a tively sta ble envi ron ments, expe ri ence no tech no log i cal change, and have few 
opti mi za tion oppor tu ni ties. Mortality pat terns for non hu man pri ma tes are also sim i lar 
to those of humans. To esti mate the model, we use the best avail  able data on chim pan
zees liv ing in the wild, from Bronikowski et al. (2011). These pop u la tions, tracked 
in the wild from birth to death, have been used to com pare mor tal ity across var i ous 
pri mate pop u la tions. We focus on chim pan zees because they are the clos est pri ma tes 
(along with bonobos) to humans.

Weobtainaverygoodfit,despitethesmallerpopulationsizeandthereforemuch
nois ier esti ma tes (see panels b and c of Figure A13 and Table A3). Compared with 
human females, female chimps are born in bet ter health, con sis tent with the obser
va tion that human infants are born frail rel a tive to other spe cies (for a dis cus sion, see  
Rosenberg and Trevathan 1995). They have a lower rate of acci den tal deaths, 
 con sis tent with mater nal mor tal ity being a uniquely impor tant prob lem among humans  
(Rosenberg 1992).12 Other param e ters, how ever, favor lon gev ity among human 
females. In chimps, the esti mated annual invest ment (I) is approx i ma tely 20% smaller, 
and the var i ance of I is 10% larger than among humans. Most nota bly, δ is much larger 
for chimps than for humans (0.06 vs. 0.0006), resulting in much faster aging. As for 
humans, female chimps live lon ger than males, partly because males have larger 
 exter nal causes of death than females. Males also have larger annual invest ments, larger 
var i ance in resources, and a larger aging param e ter (α) than females. Unlike humans, 
though, male chimps have larger esti mated ini tial health than female chimps.

12 Rosenberg (1992:100) stated that “most pri ma tes expe ri ence par tu ri tion as a sim pler, shorter, and very 
likely lesspainfulprocess” thanhumans.Ourestimatesdonot imply thatexternalcausesofdeathare
unim por tant among pri ma tes; nei ther model esti ma tes a base line acci dent rate through out.
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The Rectangularization of Survival and the Sources of Life Expectancy Increases

Remarkably,themodelis abletotracktheevolutionofthemortalityprofilesfor
all  the cohorts born since 1816. This evo lu tion is char ac ter ized by a rectangular
ization of the sur vival curves. Panel b of Figure 5 illus trates this using the sur vival 
curves of French women born in 1816, 1860, 1900, and 1940. Survival to age 1 
has increased dra mat i cally. The next sec tion of the sur vival curve, roughly from 
ages1to60,flattenedconsiderably.Inaddition,asteepdownwardslopeemerged
among the oldest. As a result, more than 70% of those born in 1940 lived past age 
70, com pared with less than 30% of those in the 1816 cohort. The model cap tures 
this rectangularization accu rately: the observed (blue mark ers) and esti mated (red 
dashes) sur vival curves are very sim i lar for all  cohorts. The results are sim i lar for 
men (Table A4).

What are the sources of increases in lon gev ity according to our esti ma tes? 
Health at birth (µH ) was stag nant for most of the nineteenth cen tury and then 
increased dra mat i cally around 1900 (Figure 5, panel c). But µH  dropped for 
cohorts born dur ing epi dem ics (1858, 1870, and 1918), extreme weather events 
(e.g., the extremely hot sum mer of 1911), and wars (1870, World War I, and 
World War II). These pat terns mir ror the evo lu tion of infant mor tal ity. It fell after 
1900 because improve ments in water, san i ta tion, and the dis sem i na tion of best 
infantfeed ing prac tices (breastfeeding, milk pas teur i za tion, and water boil ing) 
reduced infec tious dis ease mor tal ity (Corsini and Viazzo 1993; Kesztenbaum and 
Rosenthal 2017; Preston and van de Walle 1978); it increased dur ing wars, pan
dem ics, and hot sum mers.

We also observe a sec u lar decline in exter nal causes of death (Figure 5, panel 
d), con sis tent with the elim i na tion of mater nal mor tal ity—a major cause of death 
among primeaged women in the past (Loudon 1988)—and with the decline in vio
lent deaths, as documented by Pinker (2011). This decline in exter nal causes of death 
tracks the decline in the prob a bil ity of dying among 15 to 24yearolds (solid blue 
line). The level of κ  is sim i lar to the level of mor tal ity among the young, as predicted 
by the model and con sis tent with con tem po rary data (Figure 4, panel a).

Finally, we observe a sub stan tial decrease in the force of aging before 1840 and 
after 1900, the causes of which are unclear (we plot it at age 60: δ 60( )α in panel e 
of Figure 5). Since food con sump tion and heights rose after 1900, this suggests that 
nutri tion is a pos si ble deter mi nant of the aging func tion (Fogel 1994). Interestingly, 
the aging func tion declines around 1900 at the same time that µH  rises and infant mor
talitydeclines.ThesefindingsareconsistentwithFinchandCrimmins’s(2004:1736) 
obser va tion of “strong asso ci a tions between earlyage mor tal ity and sub se quent mor
talityinthesamecohorts,”whichtheyattributetothedeclineinexposuretoinfec
tiousdiseases,whichleadtoinflammation.

By con trast, health resources (I) did not change much in the nineteenth cen tury 
(they declined a bit and rose again), con sis tent with the debate on the ques tion able 
benefitsoftheIndustrialRevolutiononhealthandlivingstandards.However,events
suchastheWorldWarI/1918flupandemicsubstantiallyreducetheseresourceswhile
they are tak ing place. Panel f of Figure 5 shows a sub stan tial tem po rary decline in 
I at this time. This decline was greatest among indi vid u als aged 20–40, con sis tent 
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2123A Unified Model of Cohort Mortality

with the obser va tion that the 1918 pan demic had its larg est effects among primeaged 
adults (Murray et al. 2006).

Finally, the var i ance of health resources declined steadily. The expla na tion for 
this decline is unclear, although it is pos si ble that food avail abil ity became less var i
able (Figure A14).13 These last two param e ters ( I , σ)arethemostdifficulttoassess
against exter nal data because they rep re sent the dis tri bu tion of health resources over 
a life time.14

Figure A15 shows the per for mance of the model for cohorts born in 1816–1923 
(thelastcohortwithcompletedatauptoage90).Thefitisexcellentthroughoutthe
nineteenth cen tury, but it dete ri o rates after 1900 for a few rea sons. First, two events 
in the early twen ti eth cen tury are likely to severely affect these cohorts: the World 
War I/1918 flu pandemic andWorldWar II. Later,we discuss howwe estimated
theseevents,buttheyaredifficulttomodel.Thedataduringtheseepisodesarealso
of lower qual ity because changes in ter ri tory, for exam ple, make the com pu ta tions 
of death rates chal leng ing. Finally, we assume that no intertemporal opti mi za tion is 
occur ring. The rise of social insur ance pro grams through out the twen ti eth cen tury 
sug gests that this assump tion is likely vio lated for recent cohorts. We dis cuss opti mi
za tion and its effects at the end of the paper.

Comparison With Alternative Demographic Models

WecomparethefitofourmodeltotheclassicGompertz(1825) model, the pop u lar 
Heligman and Pollard (1980) model, a sub se quent model devel oped by Carriere 
(1992), and the vital ity model by Sharrow and Anderson (2016) (see online appen
dix B). We esti mate these four mod els and ours for men and women born in 1816 
and1921.Wecomputethreemeasuresoffit:theRMSE(rootmeansquareerror)
of the sur vival curve, the RMSE of the log mor tal ity rates, and the predicted life 
expec tancy.

The results (displayed in Table A6) show that the Heligman and Pollard model pro vi
desthebestfitforallcohorts,butourmodelisveryclosedespiteusingfewerparameters.
Further, our model per forms bet ter than more recent mod els, and unlike the Heligman and 
Pollard model, we can achieve other aims of recent demo graphic mod els.

Understanding Mortality Dynamics

In this sec tion, we con duct qual i ta tive exer cises to dem on strate that the model can 
ratio nal ize the effects on mor tal ity of tem po rary and per ma nent shocks documented 
in the lit er a ture as resulting from sim ple shocks to the model param e ters.

13 ItmightbedifficultforthemodeltoseparatelyidentifytheeffectsofI from the effects of its var i ance 
because the mor tal ity data are infor ma tive only about the left tail of the health dis tri bu tion.
14 Future research could improve this esti ma tion by impos ing that overlapping cohorts share the same 
resources. However, this is not a triv ial exer cise: it would require mak ing addi tional assump tions and alter
ing the esti ma tion pro ce dure to simul ta neously esti mate sev eral hun dreds of param e ters.
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SES Mortality Gradient

A sub stan tial lit er a ture doc u ments health and mor tal ity gra di ents—large and per sis
tent dif fer ences across indi vid u als with dif fer ent lev els of SES, such as edu ca tion or 
income (Cutler et al. 2012).

How can the model ratio nal ize such gra di ents? Suppose that we extend our model 
so that higher income leads to higher I through out life—that there exists a func tion 

I = I(Y, E) with ∂I
∂Y

> 0  and ∂I
∂E

> 0 . We illus trate the effect of low er ing Y by sim u

lat ing the effect of low er ing I by 50% for the 1816 French female cohort (Figure 6). 
Thissimulationresultsinhigherandflatterlogmortalitycurvesforthelowerincome
pop u la tion com pared to the ini tial richer pop u la tion (panel a). Moreover, the curves 
for the high and lowincome pop u la tions con verge in old age (panel b), as Chetty 
et al. (2016) documented. This occurs because, although the frailest indi vid u als die in 
thefirstperiodwhenY falls (poten tially low er ing mor tal ity), Y shifts the dis tri bu tion 
of health left in all  sub se quent peri ods, increas ing mor tal ity there af ter.

Anexaminationoftheprofileoverthelifetime(Figure 6, panel c) reveals that the 
narrowing of the mor tal ity gap occurs in the model only after a cer tain age. In log 
(per cent age) terms, the mor tal ity gap ini tially grows with age but even tu ally falls.  
In lev els, how ever, SES gaps in mor tal ity rates are Ushaped (instead of hump
shaped) with age, as Kaestner et al. (2020) illus trated (for edu ca tion) and as the 
cumu la tive advan tage hypoth e sis pre dicts (Lynch 2003; Ross and Wu 1995). The 
reasonthepatternsdifferinlevelsandlogsisthatthelogspecificationcapturesper
cent age changes, divid ing the SES gaps (in lev els) by the base line mor tal ity, which 
is also Ushaped.

Health

Lower income (or edu ca tion) and thus lower I also lower aver age health at all  ages. 
However, the effect increases with age and then declines in both lev els and per cent
age terms because mor tal ity starts ris ing (Figure 6, panel d). These pre dic tions match 
the evi dence from Case et al. (2002), Currie and Stabile (2003), and House et al. 
(2005), who showed that health gaps between those born in lowincome fam i lies and 
those born in highincome fam i lies grow with age but decline after 65.

Resource Scarcity or Accelerated Aging?

Higher SES is asso ci ated with more fre quent phys i cal exer cise, lower expo sure 
to pol lu tion, and lower stress, which may affect the rate of depre ci a tion (instead 
of the level of resources).15 In the model, an increase in the aging param e ters (δ 
or α) and a decrease in I gen er ate sim i lar changes in the health and mor tal ity 

15 For exam ple, Liu et al. (2019) found that edu ca tion and race are asso ci ated with lower meth yl a tion rates, 
a bio marker for aging.
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2125A Unified Model of Cohort Mortality

profilesamongtheold,asshowninFigureA16.However,higheragingratesdo
not result in any vis i ble health or mor tal ity gaps among chil dren, whereas higher 
I does. Therefore, the evi dence from Case et al. (2002), Currie and Stabile (2003), 
and House et al. (2005), interpreted through the lens of the model, sug gests that 
chang ing fam ily income is equiv a lent to chang ing I, although both pro cesses 
could be at play.

It would be ideal to reestimate our model using cohort data by edu ca tion or income, 
but data track ing cohorts from birth to death by fam ily income or edu ca tion lev els are 
not avail  able. Our sim u la tions show only that the model can ratio nal ize the observed 
pat terns in the data.16

16 One could reestimate the model for the aggre gate data as a mix ture of the evo lu tion of two pop u la tions 
with dif fer ent SES lev els. In the absence of data by SES, this would only add more param e ters to the 
model.

-3

-2.5

-2

-1.5

-1

-.5

Lo
g

M
or

ta
lit

y
R

at
e

40 50 60 70 80
Age

Low income
High income

a. SES gap in our model

-8

-7

-6

-5

-4

-3

Lo
g

M
or

ta
lit

y
R

at
e

40 50 60 70 80
Age

5th percentile, mean income = $6,551
95th percentile, mean income = $230,267

b. SES gap in Chetty et al. (2016)

Log gap

(left axis)

Gap
(right axis)

.5

1

1.5

0

.1

.2

.3

.4

0 20 40 60 80
Age

c. Lifetime mortality gaps

% Gap

Gap

(left axis)

(right axis)

-2.5

-2

-1.5

-1

-.5

-8

-6

-4

-2

0

0 20 40 60 80
Age

d. Lifetime health gaps

Fig. 6 Generating SES gradients in health and mortality. Panel a shows the predicted mortality rate for the 
1816 cohort (using the parameters from Table A1 but setting the accident rate at 0 throughout for simplic
ity) and the counterfactual mortality that results from a 95% decline in I for this population. The baseline 
1816cohortislabeled“Highincome,”andthecounterfactualpopulationislabeled“Lowincome.”Panel
b reproduces the results from Chetty et al. (2016) and shows the mortality rates of high and lowincome 
populations in the United States. Panel c shows the simulated effects of decreasing the baseline level of I 
(our proxy for SES) by 50% on mortality in levels and percentages. We plot the gap between the baseline 
and the affected population. This gap is computed as MR(low SES) – MR(high SES). Panel d shows the 
effects of increasing the baseline level of I by 50% on health. This gap is computed as H(low SES) – H(high 
SES). The baseline parameters are the same as in Figure 3.
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2126 A. Lleras-Muney and F. Moreau

Nonmonotonic Effects of In Utero Shocks

Detrimental events in utero (e.g., fam ine, war, reces sion) result in large and per sis
tent health declines that are vis i ble in infancy and old age (Barker et al. 1993) and in 
ele vated mor tal ity among the sur vi vors. Empirically, these effects are ini tially large 
and then appear to fade, only to reappear later in life (for a com pre hen sive review, 
see Almond et al. 2018). As Almond and Currie (2011) noted, though, the  Grossman 
model pre dicts imme di ate declines in health that are hardly vis i ble by adult hood  
(Figure 7, panel a).

What does our model pre dict? Suppose that we allow for the ini tial mean of 
the dis tri bu tion, µH , to be affected by out side forces F (µH = µH F( ), µH ′ > 0). 

0

5

10

15

20

25

S
ho

ck
(%

)

0 20 40 60 80
Age

5%
10%
15%

a. Monotonic effects in Grossman's model

Gap

(right axis)

% Gap
(left axis)

0

.1

.2

.3

.4

0

.2

.4

.6

.8

1

0 20 40 60 80 100
Age

b. U-shaped health declines in our model

Gap
(right axis)

Log gap
(left axis)

0

.05

.10

0

.005

.010

.015

.020

.025

0 20 40 60 80 100
Age

c. Negative in utero shocks increase lifetime mortality

Fig. 7 The effects of negative in utero shocks.Panela reproducesandextendsafigure inAlmondand
Currie (2011:figure1)andshowsthedeclineinthehealthstockduetoa25%shockin utero that is pre
dicted by the standard Grossman model. We simulate the evolution of health for two populations using 
Grossman’s equation for the evolution of health (also Almond and Currie 2011: equation 1), which states 
that Ht = 1− δ( )Ht + It . We set µ0 = 10 for one population and µ0 = 7.5 for the shocked population; we 
set I =1forbothpopulations.ThefiguredisplaysthedifferencesinH by age, expressed in percentages 
relative to the baseline population. This effect is initially large but fades over time and will be close to 
0 among adults older than 30; the extent of this fading depends on the depreciation rate, which we set at 
5%, 10%, and 15%. Panel b shows the simulated effects of a 50% decline in health in utero for the 1816 
Frenchpopulationinourmodel(withtheaccidentratesetat0throughoutforsimplicity).Thefigureplots
the decreases in health in levels or percentages. In contrast to the Grossman model, our model predicts a 
Ushaped pattern of effects: high in childhood, low in middle age, and increasing among the old. Panel 
c shows the effects on mortality of a 50% decline in health in uteroinlevelsandpercentages.Thefigure
shows that mortality increases as a result, and the age pattern of the effects varies depending on whether we 
express them in levels or logs. The baseline parameters used in panels b and c are the same as in Figure 3.
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2127A Unified Model of Cohort Mortality

We use the 1816 param e ters to sim u late the effect of exog e nously low er ing F, 
and thus µH , on the sur vi vors’ sub se quent health and mor tal ity (Figure 7, panel 
b). Lowering ini tial health, µH , by 50% low ers health among the sur vi vors at all  
ages—both in lev els and in per cent ages—with a Ushaped pat tern in age, exactly 
as the lit er a ture doc u ments. For exam ple, Schiman et al. (2017) found that the 
effects of expe ri enc ing World War II in utero and early child hood on health, dis
abil ity, and employ ment are not vis i ble for young adults but grow with age, as 
predicted here. The rea son this hap pens in our model but not in Grossman’s is that 
depre ci a tion in our model is not mul ti pli ca tive in the stock. Like ours, Dalgaard 
et al.’s (2019)modelofhealthdeficitsalsopredictsthatin utero shocks will result 
in health gaps that increase with age among adults. However, our model pre dicts 
a Ushaped pat tern of effects rather than a mono ton i cally increas ing effect. This 
Ushape results from our hav ing an early child hood period in which invest ments 
move the dis tri bu tion of health up.17 These results also sug gest that it is impos
si ble to iden tify the effects of in utero shocks with health data for ado les cents or 
young adults only.

Mortality

Mortality at all  ages also increases when ini tial con di tions worsen (Figure 7, panel 
c). Again, the age pat terns depend on the met rics used. When mea sured in lev els, 
the effects are Ushaped. The intu i tion for this Ushaped pat tern is sim ple. Among 
ado les cents and young adults, the aver age health level is high, and very few indi
vid u als are close to the thresh old, so shifting the dis tri bu tion of health has very lit tle 
impact on mor tal ity. But shifts in the dis tri bu tion will result in higher death rates 
when the dis tri bu tion gets closer to the thresh old at older ages. When expressed 
in per cent age terms, how ever, the predicted effects of neg a tive in utero shocks on 
mor tal ity fall with age (although this pat tern is not nec es sar ily mono tonic: in mid
dle age, when mor tal ity lev els are low, the effects can rise and fall because of the 
small num ber of deaths).

An impor tant impli ca tion of our sim u la tions for the empir i cal lit er a ture is that the 
pre dic tions for the dynamic effects of shocks on mor tal ity are sen si tive to the func
tional form one chooses for study ing its effects.

Scarring Effects of Wars

Wars have longlast ing det ri men tal health effects among sur vi vors. Such scar ring 
effects have been documented in at least 13 Euro pean countries after World War II. 
Compared with lessexposed sur vi vors, indi vid u als who were more exposed to the 
war expe ri enced worse eco nomic and health out comes that persisted sev eral decades 
later (e.g., Havari and Peracchi 2017; Kesternich et al. 2014). Similarly, Wilson et al. 

17 Withdataonhealthoverthelifetime,thesedifferentpredictionscouldbeverified.

D
ow

nloaded from
 http://dup.silverchair.com

/dem
ography/article-pdf/59/6/2109/1682185/2109llerasm

uney.pdf by guest on 09 April 2024



2128 A. Lleras-Muney and F. Moreau

(2014) showed the per sis tence of higher mor tal ity rates among New Zealand mil i tary 
per son nel who served dur ing the war than among those who did not.

Suppose we model war epi sodes as reduc ing health resources (I).18 Panel a of 
Figure 8 shows the mor tal ity curves obtained from esti mat ing the model for men 
born in 1896 with two shocks: a fouryear decline in I at age 18 (cor re spond ing 
tothecombinedeffectsofWorldWarIandthe1918flupandemic)andasixyear
decline in I at age 43 (cor re spond ing to the effects of World War II). This sim
ple char ac ter iza tion of the wars deliv ers a mor tal ity curve (red dot ted line) that 
is remark ably close to the data (blue line). When the war shocks are elim i nated, 
mor tal ity falls dur ing the war and at all  sub se quent ages (red dashed line). Thus, 
the model pre dicts the scar ring effects that other authors have documented: the 
mor tal ity rates for the affected cohort are per sis tently higher than those for unaf
fected cohorts, both dur ing the war and after. We esti mate that World War I lowered 
life expec tancy by approx i ma tely 16 years for this cohort, and that World War II 
lowered it by another 2 years.19

Harvesting Effects

Extreme weather or pol lu tion events appear to dis place the dis tri bu tion of deaths in 
the short term, cre at ing a sud den increase in the num ber of deaths followed by abnor
mallylowmortality.Indemography,thisphenomenonisknownas“harvesting”and
has been, for instance, documented in France dur ing the 2003 heat wave (Toulemon 
and Barbieri 2008).20

How can the model ratio nal ize this pat tern? Suppose that the death thresh old is 
a func tion of the envi ron ment (H = H E( ), ′H > 0). Panel b of Figure A17 shows 
the sim u lated effect of a tem po rary increase in the thresh old at ages 60 and 61 on 
the mor tal ity of the 1816 cohort. This tem po rary increase results in very high ini tial 
mor tal ity that starts drop ping before the shock ends because the frailest indi vid u als 
have already died. Once the weather dis rup tion ends and the thresh old is restored 
to its orig i nal (lower) level, mor tal ity falls even more because there are very few 
indi vid u als close to the new lower thresh old. Mortality remains below its coun
ter fac tual level until the aging pro cess low ers health stocks again. Thus, a death 
thresh old change gen er ates harvesting, and it does so by kill ing the least healthy 
indi vid u als in the cohort. A key char ac ter is tic of a thresh old change is that it does 
not affect the health of the liv ing.21

18 This assump tion is con sis tent with his tor i cal data for World War II. GDP declined dur ing the war, and 
the Ger mans appropriated 20% to 55% of it dur ing the occu pa tion (Occhino et al. 2007). Food ration ing 
beganin1940.Wecanassumethatthewarisadifferenttypeofshock,butwedonotobtainbetterfits
with these alter na tives.
19 Thefitforthiscohortcanbeimprovedifwealloweveryyearofawartohaveitsowneffectinsteadof
impos ing an equal annual shock dur ing wars (Table A5).
20 See Schwartz (2000) and Zeger et al. (1999) for the effects of pol lu tion; see Deschênes and Moretti 
(2009) and Deschênes and Greenstone (2011) for the effects of extreme tem per a tures.
21 Weather shocks may affect sur vi vors’ health. See Deschênes and Moretti (2009) and Deschênes and 
Greenstone (2011) for a dis cus sion.
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Fig. 8 Scarring and harvesting effects. Panel a shows the scarring effect of World War I on mortality rates 
for men born in France in 1896 who turned 18 when the war started in 1914 and who would have served 
in the military. The solid blue line shows the observed mortality rates for this cohort. The dotted red line 
shows the predicted mortality rates that result from estimating the model and including an additional 
parameter for World War I and another for World War II. We allow for I to differ during each war. The 
counterfactual curve (dashed red line) shows what the mortality curve would look like in the absence of 
World War I by predicting what the rates would have been in the absence of a decline in I during that war. 
Panel b shows the simulated effects of a temporary increase in the threshold (from 0 to 0.8) at ages 60 and 
61 in the 1816 French cohort (setting the accident rate to 0 for simplicity). The yaxis plots the relative 
number of deaths in the affected population divided by the number of deaths in the unaffected population. 
Thefigureshowsthatdeathsareshiftedearlier.Thisdisplacementisestimatedtoresultinapproximately
8,000 excess deaths during the shock and fewer deaths in the subsequent two years.
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Heat waves and other forms of bad weather also gen er ate excess mor tal ity 
among chil dren (Figure A17, panel b), but the dis place ment effect is sub stan tially 
more spread out. In other words, the chil dren who die as a result of the bad weather 
would not die imme di ately after the bad weather ends; they would live sub stan
tially lon ger lives. (Among chil dren, invest ment lev els are high rel a tive to depre ci
a tion, and mor tal ity is fall ing, whereas depre ci a tion is large and mor tal ity increases 
among the elderly.)

The Effects of Temporary and Permanent Shocks

The pre vi ous two sec tions illus trate the effects of tem po rary changes in I  or H , but 
they do not com pare their effects on the same scale because we aimed to repro duce 
published results. Figure A18 shows how log mor tal ity rates respond to all  types of 
tem po rary shocks. Each shock leaves a unique imprint on mor tal ity rates. Temporary 
invest ment and depre ci a tion decreases have sim i lar scar ring effects: mor tal ity rises 
when the shock starts and then starts fall ing after the shock ends, but it does not return 
to its coun ter fac tual level. On the other hand, only changes in the thresh old gen er ate 
harvesting. Only var i ance changes result in a cross over of mor tal ity rates at old ages, 
and only acci dent increases leave mor tal ity rates unchanged once the shock ends. 
Figure A19 fur ther reveals that the pat tern of these responses over time is not the 
same when viewed in logs or lev els. For com par i son, Figure A20 shows the effects of 
per ma nent shocks on all  param e ters in lev els and logs.

Optimization

So far, we con sid ered a pop u la tion that receives con stant invest ments over the life
time.InonlineappendixE,weestimatetheoptimalinvestmentprofilethatasocial
plan ner would choose to max i mize life expec tancy. We assume that the plan ner has 
afixedlifetimebudgetandtheabilitytoborrowandsavecostlessly,sotheplanner
can invest dif fer ent lev els of I at dif fer ent ages so long as they add up to the total 
bud get.22Wefindthattheoptimalstrategyformaximizinglifeexpectancyistoredis
trib ute resources from primeaged adults to chil dren and the elderly. Doing so would 
increase the life expec tancy of French women born in 1816 by three years—a con
sid er able but smaller gain than observed in the data. After opti mi za tion, the resulting 
survivalcurvesareflatterinadulthoodandsteeperatoldages,suggestingthatthe
rectangularization of sur vival is partly due to the emer gence of opti mi za tion.

Conclusion

We pro pose a par si mo ni ous pro duc tion func tion to study the evo lu tion of health 
and mor tal ity over the life course of a pop u la tion born with het ero ge neous health 

22 This is a stan dard assump tion (e.g., see Mur phy and Topel 2006).
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2131A Unified Model of Cohort Mortality

 endow ments. Despite its sim plic ity, this model tracks the evo lu tion of the mor tal ity 
profileofhumancohortsbornin1816–1940,aswellasnonhumanprimates.Further,
the model can explain many impor tant mor tal ity pat terns documented in the lit er a
ture, includ ing the rectangularization of sur vival curves and SES gra di ents in health. 
We also show how to use the model to under stand the dynamic treat ment effects of in 
utero shocks and other tem po rary events, such as wars.

The model’s par si mony relies on trans par ent but strong para met ric assump tions. 
In par tic u lar, we assume that the envi ron ment is sta ble and exog e nously pro vi des a 
con stant level of resources. These assump tions are rea son able for pri ma tes or early 
human pop u la tions but not for con tem po rary pop u la tions with access to sav ing tech
nol o gies, grow ing GDP, and med i cal inno va tions. We explore how to incor po rate 
changes in the envi ron ment into the model, but fur ther prog ress could be made by 
using data on envi ron men tal changes as inputs and by mak ing restric tions across 
cohorts. We also assume that health shocks are inde pen dent and iden ti cally dis trib
uted, and normally dis trib uted. Alternative assump tions for this dis tri bu tion of annual 
shocks could be fur ther inves ti gated. The model can also be expanded to con sider 
the role of behav ior and pol icy. Our pre lim i nary anal y sis sug gests that in the absence 
offinancialfrictions,optimalhealthexpendituresareUshapedoverthelifetimein
this model. With addi tional data, the impli ca tions of opti miz ing behav ior could be 
exploredfurther.Weleavetheseexplorationstofutureresearch.■
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