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A Unified Model of Cohort Mortality

Adriana Lleras-Muney and Flavien Moreau

ABSTRACT  We propose a dynamic production function of population health and mor­
tal­ity from birth onward. Our par­si­mo­ni­ous model pro­vi­des an excel­lent fit for the 
mortality and survival curves for primate and human populations since 1816. The 
model sheds light on the dynamics behind many phenomena documented in the litera­
ture. Simple extensions of the model can reproduce (1) the existence and evolution of 
mortality gradients across socioeconomic statuses documented in the literature, (2) non­
monotonic dynamic effects of in utero shocks, (3) persistent or scarring effects of wars, 
and (4) mortality displacement after large temporary shocks, such as extreme weather.
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Introduction

We propose a coherent framework to understand how population health and mor­
tality evolve from birth onward and how economic and other environmental factors 
throughout life affect this evolution. Statistical and economic models of health and 
mortality typically concentrate on adults. Yet, a large literature has documented that 
events and investments in utero and throughout childhood are powerful predictors 
of later-life economic and health outcomes (Almond and Currie 2011; Almond et al. 
2018). In the absence of such a quan­ti­ta­tive model, it is dif­fi­cult to pre­dict how shocks 
will affect population health at various ages, and it is even harder to design optimal 
investment or compensation policies.

We present a simple dynamic model of the production of health from birth to death 
for a heterogeneous population. In the spirit of classic demographic work (Vaupel 
et al. 1979), some individuals are born frailer than others. Subsequently, the distribu­
tion among survivors evolves according to a simple law of motion that depends on 
the level of external resources, which are stochastic. As in Grossman’s (1972) classic 
work on the production of health, an individual’s health deteriorates with age but can 
increase with investments. At any age, individuals in poor health die. In addition, 
individuals die from reasons unrelated to their health status. During the adolescent 
years, these external causes of death account for a large portion of deaths.

We estimate this model separately for more than 100 birth cohorts born since 
1816, using high-quality data from the Human Mortality Database (2017). Despite 
substantial changes in life expectancy throughout the period, the model provides an 
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excel­lent char­ac­ter­iza­tion of the mor­tal­ity age pro­files for each cohort and is con­sis­
tent with two styl­ized facts: (1) the pro­file of log mor­tal­ity rates by age has a J-shape; 
and (2) survival curves for humans have rectangularized over the last two centuries, 
flat­ten­ing through­out life and drop­ping abruptly at older ages.

We then show that simple extensions of the model can generate other previously 
documented phe­nom­ena. Specifically, we show that (1) changes in life­time resources 
generate socioeconomic status (SES) gradients (persistent gaps in log mortality rates 
across populations with different SES) that fall with age; (2) in utero insults result in 
nonmonotonic impacts on health and mortality over the lifetime; (3) short-term negative 
shocks (e.g., wars) that temporarily lower resources result in scarring (elevated mortality 
of survivors); and (4) environmental shocks (e.g., hot weather) that affect the threshold 
for dying lead to harvesting (temporarily elevated mortality followed by temporarily 
lower mortality). The model also describes the evolution of chimpanzee mortality well.

The evolution of mortality over the lifetime is, in fact, remarkably similar across 
human populations and across most primates. Because of this regularity, demogra­
phers have searched for a “uni­fied” model of mor­tal­ity that would pre­dict mor­tal­ity 
from birth to death at least since the early nineteenth century (Carnes et al. 1996). 
Like much of the literature that followed (e.g., Li and Anderson 2013), Gompertz’s 
(1825) model accounts for mortality only after a certain age, focusing on the roughly 
log-linear portion of the mortality curve after age 40. There are a few exceptions. 
A popular model by Heligman and Pollard (1980) fits period data mor­tal­ity rates 
from various contexts remarkably well. More recent demographic models describe 
aggregate mortality rates as a function of various parameters, albeit with different 
objectives: Sharrow and Anderson (2016) decomposed the gains in longevity into 
intrinsic and extrinsic deaths, whereas Palloni and Beltrán-Sánchez (2017) simulated 
the effects of childhood frailty on mortality throughout life.

Our first con­tri­bu­tion to the lit­er­a­ture (reviewed in detail in online appen­dix B) is 
to provide a new model of cohort mortality. Our approach differs in one fundamental 
aspect from the demographic approach just described. As in the seminal Grossman 
(1972) model, we model directly how the health stock of each individual evolves, rather 
than modeling the mortality or survival rates of only the aggregate population. Like 
Sharrow and Anderson (2016), we decompose mortality into two separate causes of 
death: extrinsic and intrinsic. Like Palloni and Beltrán-Sánchez (2017), we use our 
model to study the effects of frailty. Our model accomplishes both aims within the same 
frame­work while achiev­ing a great fit like Heligman and Pollard’s (1980) model does.

The sec­ond con­tri­bu­tion of this paper is to show that sim­ple mod­i­fi­ca­tions of 
this baseline model account for a wide range of existing demographic phenomena. 
We demonstrate this by studying the effects of increasing lifetime resources and 
the impact of negative in utero shocks on a population’s subsequent average health 
and mortality. We also study the effects of temporary shocks, such as wars and bad 
weather. To our knowl­edge, no other model both pro­vi­des an excel­lent fit to the cohort 
data and can also explain the variety of phenomena we study.

Our model provides a framework that bridges the demographic and economic 
approaches: we model individual health as economists do, but we study its aggregate 
implications for population mortality in the tradition of demographic studies. Our 
model is more parsimonious than Grossman’s (1972) classic work or its most recent 
successors in the economics literature (Dalgaard and Strulik 2014; Galama and van 
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Kippersluis 2019). These more complex models were developed to understand health 
expenditures and health behaviors. We focus only on a production process and are 
silent about maximizing behavior, at least initially.

Our main innovation relative to economic models is to include childhood. Alter­
native state-of-the-art models, such as Dalgaard and Strulik’s (2014) accumulating 
health defi­cits model or Galama and van Kippersluis’s (2019) theory of SES and 
mortality, start with adults. A recent model by Dalgaard et al. (2021) includes child­
hood, but it does so by adding a separate health production function for childhood. 
Instead, our framework describes aging from birth to death with a unique law of 
motion, where mortality declines during childhood owing to both selection and 
invest­ments. We also dem­on­strate that our model fits mor­tal­ity curves for entire 
cohorts well, which economic models have not demonstrated.

Stylized Facts: Health and Mortality Over the Lifetime

Mortality

We study the evolution of mortality for a given cohort using data from the Human 
Mortality Database (HMD; 2017). The HMD provides population and death counts 
by age, birth year, and gender collected through vital registration systems (birth and 
death cer­tifi­cates) and censuses from 1816 to 2015. Despite a few lim­i­ta­tions, the 
HMD is the highest quality data available for cohort analysis. We compute mortality 
rates by age for each cohort as the number of deaths divided by the population at that 
age, and we use these rates to compute survival rates and life expectancy (see online 
appendix D). We focus on French cohorts for two reasons: these cohorts are large, and 
the data extend back to 1816.

We study cohort mortality rates, which are used more often than period rates. 
In a stationary environment, with stable mortality rates by age over time, the two 
are very close, but they diverge otherwise. The evolution of period and cohort life 
expectancy at birth by gender in France is summarized in Figure A10 (this and all 
other fig­ures and tables des­ig­nated with an “A” are shown in the online appen­dix).1 
For the 1816–1860 cohorts, (cohort and period) life expectancy at birth was stable 
at approximately age 40 for females and age 39 for males. However, life expectancy 
increased in the late nineteenth century, with cohort life expectancy rising more than 
period life expectancy. Several cohorts of men (born in roughly 1880–1900) experi­
enced declines in life expectancy, likely as a result of World War I and World War II. 
Among those born around 1920, females and males lived approximately 69 and 59 
years, respectively—substantially longer than cohorts born a century earlier.

Figure 1 shows the logarithm of mortality rates by age for selected birth cohorts 
of women born between 1860 and 1940. Results for various European countries are 
shown in panel a, and results for France are shown in panel b. Although the level of 

1  Period life expectancy is computed using the cross-sectional mortality rates of all cohorts alive in a year, 
whereas cohort life expectancy is computed using a cohort’s realized mortality rates. For example, 1850 
period life expectancy uses the observed mortality rates of 70-year-olds in 1850. But when 1850 cohort life 
expectancy is computed, the mortality rates at age 70 are those observed in 1920.
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mortality changed substantially over time, the basic evolution of mortality rates by 
age is similar across many countries and periods.

For a given cohort, the logarithm of mortality has the shape of a check mark: 
high at birth, low among the young, and high and rising almost linearly with age in 
adult­hood. Mortality curves also dis­play an “ado­les­cent hump,” espe­cially vis­i­ble 
for cohorts born in the nineteenth century: starting in adolescence, mortality rates 
increase rapidly (Preston et  al. 2000; Thiele 1871). Finally, spikes are evident for 
some cohorts, corresponding to wars and epidemics. These patterns are more visible 
when examining all the cohort curves, which are similar but not identical for men (see 
Figures A11 and A12). These patterns are not unique to humans. Bronikowski et al. 
(2011) used longitudinal data from primates living in the wild and showed that these 
mortality patterns are similar across all primates.

Health

The World Health Organization defi­nes health as “a state of com­plete phys­i­cal, men­
tal and social well-being and not merely the absence of dis­ease and infir­mity.”2 Thus, 

2  See https:​/​/www​.who​.int​/about​/governance​/constitution.
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Fig. 1  Cohort mortality rates for selected European cohorts born in 1860–1940. Data are from the Human 
Mortality Database (2017). Panel a shows the log10 of the mortality rates, by age, for women born in 1860 
and in 1940 in six European countries (Belgium, Denmark, the Netherlands, Sweden, France, and Norway). 
Panel b shows the mortality rates for women born in France in 1860, 1880, 1900, 1920, and 1940.
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2113A Unified Model of Cohort Mortality

health is a multidimensional concept that is not easily captured by any single metric, 
but partial measures are available. A striking empirical pattern is that the distribution 
of various health indicators observed at different ages is roughly Gaussian. For exam­
ple, the distribution of birth weights is normal (Wilcox and Russell 1983), and so is 
the distribution of adult heights (Tanner 1981).

How does the distribution of health evolve with age? Unfortunately, the HMD 
does not contain any health measures. In fact, we are not aware of any data that track 
a consistent measure of health from birth to death for a given cohort. But several stud­
ies provide partial descriptions of this evolution. Mean health increases and then falls 
with age, peaking sometime in young adulthood. Biological functions, such as mus­
cle mass (Metter et al. 1999), bone mass (Baxter-Jones et al. 2011), and performance 
in physical and cognitive tasks (Allen and Hopkins 2015; Strittmatter et al. 2020), 
peak sometime between ages 20 and 35. Self-reported measures of health, which cap­
ture overall health, decline in adulthood (Case and Deaton 2005; Deaton and Paxson 
1998; Halliday et al. 2018; Kaestner et al. 2020).

The variance in health also rises with age and then seems to level off or fall among 
the oldest, although the data are less clear about what happens among the oldest 
(Deaton and Paxson 1998; Halliday et al. 2019; Halliday 2011). The variance in organ 
function also rises with age (Steves et al. 2012). Lastly, both objective measures of 
health and subjective overall measures of health are strong predictors of mortality 
(Benyamini and Idler 1999; McGee et al. 1999).

A Unified Model of Aging and Mortality

In this section, we present a simple model that can account for these basic stylized 
facts about health and mortality.

Individuals are born with an initial health endowment, H0, that differs across indi­
viduals in the population and has an unknown distribution.3 Every period, the envi­
ronment provides resources (I ) to all individuals, which increase health (H ). In this 
basic model (and in contrast to Grossman’s), individuals have no control over their 
resources. In addition, individuals in the same environment are more or less lucky 
and experience an idiosyncratic shock (εa ) to their resources. For example, I  char­
acterizes the per capita amount of food that a country produces, but a given person 
might receive less if, for instance, rainfall was unusually low in their location. The 
variance of εa  captures how unequal the distribution of resources is. These idiosyn­
cratic shocks are assumed to be independent and identically distributed every period.

Finally, the health stock depreciates each period by an amount d(a), which 
increases with age a (d ′ (a) > 0). This aging pro­cess reflects “the accu­mu­la­tion of 
random damage to the building blocks of life—especially to DNA, certain proteins, 
carbohydrates, and lipids (fats)—that begins early in life and eventually exceeds the 

3  Although health is multidimensional, we use a single index, as in Grossman (1972). This health mea­
sure can be viewed as a suf­fi­cient sta­tis­tic for a larger col­lec­tion of health indi­ca­tors (e.g., vas­cu­lar, brain 
functions), each following a different law of motion. Alternatively, one could model various health dimen­
sions and how each affects the probability of dying, as in engineering models of aging or competing-risks 
models.
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2114 A. Lleras-Muney and F. Moreau

body’s self-repair capabilities” (Olshansky et al. 2002:93). These forces determine 
the evolution of the health stock, which is an unobserved latent variable.

Individuals die when their stock of health dips below a threshold H , which is fixed 
throughout the lifetime and identical for all individuals. (This assumption that over­
all health predicts mortality is consistent with empirical observations: for example, 
self-reported heath and objective measures of health both predict mortality (Ganna and 
Ingelsson 2015; Idler and Benyamini 1997).) Let Da = I Ha ≤ H ,Da  −  1 = 0( ) denote  
the random variable equal to 1 if the individual dies at age a. Then, the population’s 
health and mortality are characterized by the following dynamic system:

 

Ha = Ha  − 1 − d a( ) + I + εa  if Da  − 1 = 0

Da = I Ha ≤ H ,Da  − 1 = 0( )
D0 = 0,

⎧

⎨
⎪⎪

⎩
⎪
⎪

with I ∈R. Note that if Da = 1, then Ha is unde­fined; indi­vid­u­als’ health is not observed 
after they die. But we observe the mortality rate for the population at age a, which 
is given by MRa = P Da = 1|Ds = 0,∀s < a( ). Thus, the distribution of health and the 
mortality rate at any age are functions of the entire history of shocks and invest­
ments. We make three key parametric assumptions to make the model more tractable 
and consistent with the empirical evidence above. First, H0 follows a normal distri­
bution N µH ,σ2( ). Second, shocks to resources every period also follow a normal 
distribution, εa ~ N 0,σ2( ).4 Third, depreciation is a power function, d a( ) = δaα with 
δ ∈ 0,∞( ), α ∈ 0,∞( ).5 This aging process starts slowly at birth, consistent with evi­
dence that aging markers deteriorate among children (Wong et al. 2010). It increases 
rapidly with age among adults, as in biological models of senescence (Armitage and 
Doll 1954; Pompei and Wilson 2002).6

Figure 2 illus­trates the evo­lu­tion of health and mor­tal­ity in the first two peri­
ods. Initially, the health distribution is normal. Then it shifts to the right during the 
first period as long as I is positive (and larger than the aging term) and spreads out 
(because of the stochastic shock, εa). Individuals who were born too frail or experi­
enced large negative shocks move to the left of the threshold and die. Graphically, 
the infant mor­tal­ity rate (the frac­tion of indi­vid­u­als who die in the first period) cor­
responds to the area under the dashed red curve below the threshold. In the second 
period, this truncated distribution moves right again (if I is large relative to d(1)), and 
the population receives a new shock, generating mortality again among those with 
large negative shocks.

4  The model can accommodate other distributions, but simulations with alternative assumptions (e.g., log 
nor­mal errors) resulted in coun­ter­fac­tual mor­tal­ity rates and a poorer over­all fit.
5  Our esti­ma­tes for human pop­u­la­tions find that α  > 1. The depreciation is therefore convex in age. Many 

empirical studies in gerontology have focused on the rate of aging, which corresponds to αH
H

=
−d a( )
H

 

in our model. As in those studies and consistent with Dalgaard et al. (2019), we find that indi­vid­u­als with 
lower health levels age faster.
6  See Gavrilov and Gavrilova (1991) and Weibull (1951) for attempts at biological microfoundations 
drawing on reliability theory from engineering.
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The stochastic term εa  therefore plays a key role. In its absence, there would be no 
deaths in Period 2 or any subsequent period until the depreciation term becomes large 
enough to push the leftmost part of the distribution below the threshold.7 Thereafter, 
mortality increases every period. Eventually everyone dies, which we prove more 
formally in online appendix C.

This basic model matches the stylized patterns described earlier. Figure 3 shows 
the evolution of the health distribution and the resulting mortality over the lifetime. 
Just like their empir­i­cal coun­ter­parts, cohorts in our model exhibit the fol­low­ing pat­
terns: (1) the health distribution is roughly normal at most ages; (2) mean population 
health first increases and then falls with age; (3) the var­i­ance of health first increases 
and then falls with age; and (4) mor­tal­ity first falls and then rises at a roughly log-­ 
linear rate after middle age. There is only one data feature we have not accounted for: 
the increase in mortality around adolescence.

Not all deaths have direct biological causes. Many deaths, such as accidents or 
homicides, strike individuals regardless of their health status. These extrinsic causes 
of death can be integrated into the model through the addition of an independent and 
identically distributed accident shock that is independent of the stock of health, Ha .. 
Then, a constant fraction κ ∈ [0,1] of the population is randomly killed every period. 

7  If I  is less than aging, then one could generate positive mortality in the second period without a stochastic 
term. However, mortality would then rise from age 2 onward, which we do not observe in the data.
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Fig. 2  Health and mortality in the first two years of life. Data are from simulations. The figure shows the 
evolution of the health distribution in the first two periods of life in a population where I exceeds the force 
of aging (δaα) in the first two periods.
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This ran­dom acci­dent rate places a floor on the level of mor­tal­ity that is con­stant 
across ages.8

Panel a of Figure 4 shows that adding a lifetime accident shock increases the mor­
tality level at all ages but does not change its basic evolution. Adding mortality from 

8  If all health-related deaths were eliminated, this accident rate would uniquely determine the life 
expectancy of the population (1 / κ ).
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Fig. 3  Model behavior. Simulated data for a population of 500,000 individuals and without an adolescent 
hump. For this simulation, we use the following parameters: I = 0.3575753, δ =0.0004789, σ =0.8353752, 
α =1.7883, and µ0 = 0.925079. Panel a shows the density of health for the population at ages 1, 40, and 90. 
Panel b plots average health, the variance of health, and mortality rates for the population over the lifetime, 
without external causes of death.
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Fig. 4  Adding accidents to the baseline model. Panel a shows the evolution of mortality based on a sim­
ulation that uses the same baseline parameters as in Figure 3. The green dashed line shows the mortality 
curve without any accidents (κ = 0). The red dotted line shows the mortality curve of a population that 
experiences a κ = 0.004% chance of dying every period as a result of an accident, unrelated to health. The 
blue line shows the model that assumes the accident rate is 0 at birth but jumps to 0.004 in adolescence. 
Mortality rates are higher as a result of external deaths but more so among young adults because of com­
peting risks: older individuals who experience an accident shock are also unhealthy and would die even 
in the absence of an accident shock. Panel b is reproduced from Schwandt and von Wachter (2020), who 
generously agreed to its use. The data come from period (not cohort) tables, so they are not directly com­
parable to ours. However, we use these data to demonstrate that the mortality rate from non-disease-related 
causes of death is well approximated by a step function that starts in adolescence. Mortality rates are shown 
in log10 scale.
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accidents also does not affect the health distribution among the living because these 
deaths are random and do not depend on health status.

Contemporary data, however, show that the mortality rate from external causes 
of death is not constant throughout life. Instead, it is well approximated by a step 
function, with a major increase around adolescence (Figure 4, panel b). Among the 
young (ages 15–24), more than 80% of deaths are due to external deaths (Centers for 
Disease Control and Prevention 2019). On the basis of this evidence, we assume that 
κ starts at 0 but becomes positive in adolescence at an arbitrary age (a*); we therefore 
add two more parameters to the model. For simplicity, we assume that the onset of 
adolescence is unaffected by health levels, and we take it to be exogenous.9 Panel a 
of Figure 4 shows that adding this step func­tion results in a pro­file of mor­tal­ity that 
qualitatively matches the main features we observe.10

Explaining Mortality Patterns

We now assess whether the model can quantitatively match observed mortality pat­
terns. To do so, we esti­mate the model param­e­ters and assess the model’s fit for 
both human and primate cohorts. We then compare our model to other demographic 
models.

Identification and Estimation

Identification

Two of the nine param­e­ters of the full model can­not be iden­ti­fied. To see this, note 
that we can add or subtract any constant on both sides of the expression that deter­
mines the probability of dying, Da = I Ha ≤ H ,Da−1 = 0( ), and leave the mortality 
rates at all ages unchanged. Thus, we must normalize either the level of initial health 
(µ) or the threshold (H ). Similarly, we can multiply each side of the equation by any 
positive constant and leave the probability of dying unchanged. Therefore, the scale 
of at least one variable must also be normalized. Without loss of generality, we set 
H  = 0 and σH  = 1. After normalization, all the parameters are expressed in standard 
deviation units (except for α and κ, which are scale-free—they do not depend on  
the initial distribution). For example, we interpret µH  as the distance from the 
threshold of the initial distribution, measured in standard deviations of the initial 
distribution.

The rescaled model characterizes the biological evolution of health and mortal­
ity of a cohort using seven (rescaled) parameters: one for the mean initial health 

9  This assumption could be relaxed. The onset of menarche, a proxy for adolescence in women, has 
declined from approximately age 16 to age 12 in the last two centuries. This development has been linked 
to nutritional changes and might be a function of health.
10  The shapes in the two fig­ures are not iden­ti­cal. However, the con­tem­po­rary data are period data, not 
cohort data. In con­tem­po­rary set­tings, the two pro­files dif­fer sub­stan­tially. Unfortunately, no his­tor­i­cal 
cohort mortality series by cause of death is available.
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(µH), two governing the aging process (δ, α), two characterizing the effects 
of resources in the form of average investments ( I ) and the variance of these 
investments (σ2), and two capturing the accident rate (κ) that starts in adolescence 
at age a*. We do not estimate this last parameter. We assume that women’s ado­
lescence begins at the age at menarche, calculated as (−0.0175 × calendar year) 
+47.4. This equation was estimated by de La Rochebrochard (2000) using histor­
ical data from multiple sources. Adolescence is assumed to start one year later 
for men, as observed in contemporary settings. For chimpanzees, we draw on the 
literature to identify two alternative starting ages: 8 (Behringer et al. 2014) and 14 
(Bronikowski et al. 2011).

Estimation

Despite the model’s conceptual simplicity, the mortality rate at a given age cannot be 
expressed in closed form. We therefore estimate the parameters using the simulated 
method of moments: we generate data for a population and compare the resulting 
survival curve to the actual survival curve. The program iterates over the parameter 
space until the difference between the simulated and actual data is minimized. By 
matching the age-spe­cific sur­vival rates, we implic­itly match life expec­tancy. See 
online appendix D for details.

Mortality Rates Over the Lifetime

We start by estimating the model for women born in 1816. The model closely matches 
their mortality rates at every age (Figure 5, panel a). The predicted life expectancy is 
38 years and 102 days, and the actual life expectancy is 38 years and 91 days.

We estimate initial mean health to be 0.86, so many individuals are born at or 
below the thresh­old (Table A1). Absent any shocks or invest­ment in the first period, 
infant mortality would have been roughly 15% (instead of 17%). Mortality falls 
dramatically after age 1 because of selection (many frail individuals have already 
died) and because invest­ment is large rel­a­tive to aging in the first period (I is esti­
mated as 0.4, and δ is estimated as 0.0006).11

The estimated variance of resources is large (∼1), so a few unlucky individuals 
still fall below the death threshold after age 2. Log mortality starts to increase steadily 
after age 45. This gradual increase occurs because δ is small (∼0.0006), but the aging 
rate (α) is approximately 1.8, and the aging function δaα thus increases more than 
linearly with age.

Accounting for exter­nal deaths is impor­tant: the fit of the model improves sig­nifi­
cantly, and the estimated parameters change (compare columns 1 and 2 of Table A1). 
The external mortality rate is 8.6 per thousand per year, lowering this cohort’s life 
expectancy by approximately 7.6 years. This number is an upper-bound estimate of 

11  Health investments (I) are not technically needed to generate declining mortality in childhood.
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2120 A. Lleras-Muney and F. Moreau

the effect of maternal mortality—the main cause of death for women in the nineteenth 
century—on life expectancy in the past.

These results are robust to sev­eral alter­na­tive esti­ma­tion mod­i­fi­ca­tions, includ­ing 
using alternative weights, using an alternative objective function, and allowing for 
truncation at age 90. We also estimate models in which the onset of adolescence is 
normally distributed and estimated. These results (displayed in Table A2) show that 
the fit is not very sen­si­tive to these alter­na­tives.
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Fig. 5  Evolution of survival for French females born in 1816–1940. Panel a shows the observed mortality 
rates and the predicted rates for French women born in 1816. Panel b shows the observed (blue markers) 
and estimated (red dashes) survival curves for four cohorts of French women. Panel c shows the evolution 
of the infant mortality rate (IMR) and of health at birth (Mu, denoted by µ0  in the model). Panel d shows 
the estimates of mortality from external causes (κ) alongside the average probability of dying across ages 
15–24 (from cohort tables). Panel e shows the estimated function of aging at age 60, as δ 60( )α and µ0. 
Panel f shows the estimated effect of World War I and the 1918 flu pandemic on I as a function of age on 
the onset of the shock.
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2121A Unified Model of Cohort Mortality

Gender Differences

Figure A13 (panel a) shows the results for males born in 1816 (Table A1 reports the 
estimated parameters). Men born in 1816 had shorter lives than women. After account­
ing for the ado­les­cent hump, which sub­stan­tially improves the fit (col­umn 4), we 
find that ini­tial mean health is 18% lower for males than for females, con­sis­tent with 
males’ greater frailty and higher infant mortality rates (Cullen et al. 2016; Goldin and 
Lleras-Muney 2019). Males receive slightly larger annual investments (about 10% 
greater) but experience greater variance in investments (5%). They also age faster in 
old age (although women age a bit faster during prime ages). The increase in deaths in 
adolescence is larger for men (κ = 0.0097), consistent with their greater involvement 
in accidents and violent deaths. However, because males have higher overall mortal­
ity rates, the elimination of accidental deaths would increase their life expectancy by 
approximately 7.6 years, similar to the predicted gains for women. Overall, the model 
fit is excel­lent for both gen­ders, although the fit is bet­ter for females. Further, all­ param­
e­ters except for mean invest­ments ben­e­fit women’s sur­vival.

Primates

Our model should describe mortality for nonhuman primates well: they live in 
relatively stable environments, experience no technological change, and have few 
optimization opportunities. Mortality patterns for nonhuman primates are also similar 
to those of humans. To estimate the model, we use the best available data on chimpan­
zees living in the wild, from Bronikowski et al. (2011). These populations, tracked 
in the wild from birth to death, have been used to compare mortality across various 
primate populations. We focus on chimpanzees because they are the closest primates 
(along with bonobos) to humans.

We obtain a very good fit, despite the smaller pop­u­la­tion size and there­fore much 
noisier estimates (see panels b and c of Figure A13 and Table A3). Compared with 
human females, female chimps are born in better health, consistent with the obser­
vation that human infants are born frail relative to other species (for a discussion, see  
Rosenberg and Trevathan 1995). They have a lower rate of accidental deaths, 
consistent with maternal mortality being a uniquely important problem among humans  
(Rosenberg 1992).12 Other parameters, however, favor longevity among human 
females. In chimps, the estimated annual investment (I) is approximately 20% smaller, 
and the variance of I is 10% larger than among humans. Most notably, δ is much larger 
for chimps than for humans (0.06 vs. 0.0006), resulting in much faster aging. As for 
humans, female chimps live longer than males, partly because males have larger 
external causes of death than females. Males also have larger annual investments, larger 
variance in resources, and a larger aging parameter (α) than females. Unlike humans, 
though, male chimps have larger estimated initial health than female chimps.

12  Rosenberg (1992:100) stated that “most primates experience parturition as a simpler, shorter, and very 
likely less pain­ful pro­cess” than humans. Our esti­ma­tes do not imply that exter­nal causes of death are 
unimportant among primates; neither model estimates a baseline accident rate throughout.
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2122 A. Lleras-Muney and F. Moreau

The Rectangularization of Survival and the Sources of Life Expectancy Increases

Remarkably, the model is ­able to track the evo­lu­tion of the mor­tal­ity pro­files for 
all the cohorts born since 1816. This evolution is characterized by a rectangular­
ization of the survival curves. Panel b of Figure 5 illustrates this using the survival 
curves of French women born in 1816, 1860, 1900, and 1940. Survival to age 1 
has increased dramatically. The next section of the survival curve, roughly from 
ages 1 to 60, flat­tened con­sid­er­ably. In addi­tion, a steep down­ward slope emerged 
among the oldest. As a result, more than 70% of those born in 1940 lived past age 
70, compared with less than 30% of those in the 1816 cohort. The model captures 
this rectangularization accurately: the observed (blue markers) and estimated (red 
dashes) survival curves are very similar for all cohorts. The results are similar for 
men (Table A4).

What are the sources of increases in longevity according to our estimates? 
Health at birth (µH ) was stagnant for most of the nineteenth century and then 
increased dramatically around 1900 (Figure 5, panel c). But µH  dropped for 
cohorts born during epidemics (1858, 1870, and 1918), extreme weather events 
(e.g., the extremely hot summer of 1911), and wars (1870, World War I, and 
World War II). These patterns mirror the evolution of infant mortality. It fell after 
1900 because improvements in water, sanitation, and the dissemination of best 
infant-feeding practices (breastfeeding, milk pasteurization, and water boiling) 
reduced infectious disease mortality (Corsini and Viazzo 1993; Kesztenbaum and 
Rosenthal 2017; Preston and van de Walle 1978); it increased during wars, pan­
demics, and hot summers.

We also observe a secular decline in external causes of death (Figure 5, panel 
d), consistent with the elimination of maternal mortality—a major cause of death 
among prime-aged women in the past (Loudon 1988)—and with the decline in vio­
lent deaths, as documented by Pinker (2011). This decline in external causes of death 
tracks the decline in the probability of dying among 15- to 24-year-olds (solid blue 
line). The level of κ  is similar to the level of mortality among the young, as predicted 
by the model and consistent with contemporary data (Figure 4, panel a).

Finally, we observe a substantial decrease in the force of aging before 1840 and 
after 1900, the causes of which are unclear (we plot it at age 60: δ 60( )α in panel e 
of Figure 5). Since food consumption and heights rose after 1900, this suggests that 
nutrition is a possible determinant of the aging function (Fogel 1994). Interestingly, 
the aging function declines around 1900 at the same time that µH  rises and infant mor­
tal­ity declines. These find­ings are con­sis­tent with Finch and Crimmins’s (2004:1736) 
observation of “strong associations between early-age mortality and subsequent mor­
tal­ity in the same cohorts,” which they attri­bute to the decline in expo­sure to infec­
tious dis­eases, which lead to inflam­ma­tion.

By contrast, health resources (I) did not change much in the nineteenth century 
(they declined a bit and rose again), consistent with the debate on the questionable 
ben­e­fits of the Industrial Revolution on health and liv­ing stan­dards. However, events 
such as the World War I/1918 flu pan­demic sub­stan­tially reduce these resources while 
they are taking place. Panel f of Figure 5 shows a substantial temporary decline in 
I at this time. This decline was greatest among individuals aged 20–40, consistent 
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2123A Unified Model of Cohort Mortality

with the observation that the 1918 pandemic had its largest effects among prime-aged 
adults (Murray et al. 2006).

Finally, the variance of health resources declined steadily. The explanation for 
this decline is unclear, although it is possible that food availability became less vari­
able (Figure A14).13 These last two parameters ( I , σ) are the most dif­fi­cult to assess 
against external data because they represent the distribution of health resources over 
a lifetime.14

Figure A15 shows the performance of the model for cohorts born in 1816–1923 
(the last cohort with com­plete data up to age 90). The fit is excel­lent through­out the 
nineteenth century, but it deteriorates after 1900 for a few reasons. First, two events 
in the early twentieth century are likely to severely affect these cohorts: the World 
War I/1918 flu pan­demic and World War II. Later, we dis­cuss how we esti­mated 
these events, but they are dif­fi­cult to model. The data dur­ing these epi­sodes are also 
of lower quality because changes in territory, for example, make the computations 
of death rates challenging. Finally, we assume that no intertemporal optimization is 
occurring. The rise of social insurance programs throughout the twentieth century 
suggests that this assumption is likely violated for recent cohorts. We discuss optimi­
zation and its effects at the end of the paper.

Comparison With Alternative Demographic Models

We com­pare the fit of our model to the clas­sic Gompertz (1825) model, the popular 
Heligman and Pollard (1980) model, a subsequent model developed by Carriere 
(1992), and the vitality model by Sharrow and Anderson (2016) (see online appen­
dix B). We estimate these four models and ours for men and women born in 1816 
and 1921. We com­pute three mea­sures of fit: the RMSE (root-mean-square error) 
of the survival curve, the RMSE of the log mortality rates, and the predicted life 
expectancy.

The results (displayed in Table A6) show that the Heligman and Pollard model provi­
des the best fit for all­ cohorts, but our model is very close despite using fewer param­e­ters. 
Further, our model performs better than more recent models, and unlike the Heligman and 
Pollard model, we can achieve other aims of recent demographic models.

Understanding Mortality Dynamics

In this section, we conduct qualitative exercises to demonstrate that the model can 
rationalize the effects on mortality of temporary and permanent shocks documented 
in the literature as resulting from simple shocks to the model parameters.

13  It might be dif­fi­cult for the model to sep­a­rately iden­tify the effects of I from the effects of its variance 
because the mortality data are informative only about the left tail of the health distribution.
14  Future research could improve this estimation by imposing that overlapping cohorts share the same 
resources. However, this is not a trivial exercise: it would require making additional assumptions and alter­
ing the estimation procedure to simultaneously estimate several hundreds of parameters.
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2124 A. Lleras-Muney and F. Moreau

SES Mortality Gradient

A substantial literature documents health and mortality gradients—large and persis­
tent differences across individuals with different levels of SES, such as education or 
income (Cutler et al. 2012).

How can the model rationalize such gradients? Suppose that we extend our model 
so that higher income leads to higher I throughout life—that there exists a function 

I = I(Y, E) with ∂I
∂Y

> 0  and ∂I
∂E

> 0 . We illustrate the effect of lowering Y by simu­

lating the effect of lowering I by 50% for the 1816 French female cohort (Figure 6). 
This sim­u­la­tion results in higher and flat­ter log mor­tal­ity curves for the lower income 
population compared to the initial richer population (panel a). Moreover, the curves 
for the high- and low-income populations converge in old age (panel b), as Chetty 
et al. (2016) documented. This occurs because, although the frailest individuals die in 
the first period when Y falls (potentially lowering mortality), Y shifts the distribution 
of health left in all subsequent periods, increasing mortality thereafter.

An exam­i­na­tion of the pro­file over the life­time (Figure 6, panel c) reveals that the 
narrowing of the mortality gap occurs in the model only after a certain age. In log 
(percentage) terms, the mortality gap initially grows with age but eventually falls.  
In levels, however, SES gaps in mortality rates are U-shaped (instead of hump-
shaped) with age, as Kaestner et  al. (2020) illustrated (for education) and as the 
cumulative advantage hypothesis predicts (Lynch 2003; Ross and Wu 1995). The 
rea­son the pat­terns dif­fer in lev­els and logs is that the log spec­i­fi­ca­tion cap­tures per­
centage changes, dividing the SES gaps (in levels) by the baseline mortality, which 
is also U-shaped.

Health

Lower income (or education) and thus lower I also lower average health at all ages. 
However, the effect increases with age and then declines in both levels and percent­
age terms because mortality starts rising (Figure 6, panel d). These predictions match 
the evidence from Case et  al. (2002), Currie and Stabile (2003), and House et  al. 
(2005), who showed that health gaps between those born in low-income families and 
those born in high-income families grow with age but decline after 65.

Resource Scarcity or Accelerated Aging?

Higher SES is associated with more frequent physical exercise, lower exposure 
to pollution, and lower stress, which may affect the rate of depreciation (instead 
of the level of resources).15 In the model, an increase in the aging parameters (δ 
or α) and a decrease in I generate similar changes in the health and mortality 

15  For example, Liu et al. (2019) found that education and race are associated with lower methylation rates, 
a biomarker for aging.
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2125A Unified Model of Cohort Mortality

­pro­files among the old, as shown in Figure A16. However, higher aging rates do 
not result in any visible health or mortality gaps among children, whereas higher 
I does. Therefore, the evidence from Case et al. (2002), Currie and Stabile (2003), 
and House et al. (2005), interpreted through the lens of the model, suggests that 
changing family income is equivalent to changing I, although both processes 
could be at play.

It would be ideal to reestimate our model using cohort data by education or income, 
but data tracking cohorts from birth to death by family income or education levels are 
not available. Our simulations show only that the model can rationalize the observed 
patterns in the data.16

16  One could reestimate the model for the aggregate data as a mixture of the evolution of two populations 
with different SES levels. In the absence of data by SES, this would only add more parameters to the 
model.
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Fig. 6  Generating SES gradients in health and mortality. Panel a shows the predicted mortality rate for the 
1816 cohort (using the parameters from Table A1 but setting the accident rate at 0 throughout for simplic­
ity) and the counterfactual mortality that results from a 95% decline in I for this population. The baseline 
1816 cohort is labeled “High income,” and the counterfactual population is labeled “Low income.” Panel 
b reproduces the results from Chetty et al. (2016) and shows the mortality rates of high- and low-income 
populations in the United States. Panel c shows the simulated effects of decreasing the baseline level of I 
(our proxy for SES) by 50% on mortality in levels and percentages. We plot the gap between the baseline 
and the affected population. This gap is computed as MR(low SES) – MR(high SES). Panel d shows the 
effects of increasing the baseline level of I by 50% on health. This gap is computed as H(low SES) – H(high 
SES). The baseline parameters are the same as in Figure 3.
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Nonmonotonic Effects of In Utero Shocks

Detrimental events in utero (e.g., famine, war, recession) result in large and persis­
tent health declines that are visible in infancy and old age (Barker et al. 1993) and in 
elevated mortality among the survivors. Empirically, these effects are initially large 
and then appear to fade, only to reappear later in life (for a comprehensive review, 
see Almond et al. 2018). As Almond and Currie (2011) noted, though, the Grossman 
model predicts immediate declines in health that are hardly visible by adulthood  
(Figure 7, panel a).

What does our model predict? Suppose that we allow for the initial mean of 
the distribution, µH , to be affected by outside forces F (µH = µH F( ), µH ′ > 0). 
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Fig. 7  The effects of negative in utero shocks. Panel a reproduces and extends a figure in Almond and 
Currie (2011: figure 1) and shows the decline in the health stock due to a 25% shock in utero that is pre­
dicted by the standard Grossman model. We simulate the evolution of health for two populations using 
Grossman’s equation for the evolution of health (also Almond and Currie 2011: equation 1), which states 
that Ht = 1− δ( )Ht + It . We set µ0 = 10 for one population and µ0 = 7.5 for the shocked population; we 
set I = 1 for both populations. The figure displays the differences in H by age, expressed in percentages 
relative to the baseline population. This effect is initially large but fades over time and will be close to 
0 among adults older than 30; the extent of this fading depends on the depreciation rate, which we set at 
5%, 10%, and 15%. Panel b shows the simulated effects of a 50% decline in health in utero for the 1816 
French population in our model (with the accident rate set at 0 throughout for simplicity). The figure plots 
the decreases in health in levels or percentages. In contrast to the Grossman model, our model predicts a 
U-shaped pattern of effects: high in childhood, low in middle age, and increasing among the old. Panel 
c shows the effects on mortality of a 50% decline in health in utero in levels and percentages. The figure 
shows that mortality increases as a result, and the age pattern of the effects varies depending on whether we 
express them in levels or logs. The baseline parameters used in panels b and c are the same as in Figure 3.
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2127A Unified Model of Cohort Mortality

We use the 1816 parameters to simulate the effect of exogenously lowering F, 
and thus µH , on the survivors’ subsequent health and mortality (Figure 7, panel 
b). Lowering initial health, µH , by 50% lowers health among the survivors at all 
ages—both in levels and in percentages—with a U-shaped pattern in age, exactly 
as the literature documents. For example, Schiman et al. (2017) found that the 
effects of experiencing World War II in utero and early childhood on health, dis­
ability, and employment are not visible for young adults but grow with age, as 
predicted here. The reason this happens in our model but not in Grossman’s is that 
depreciation in our model is not multiplicative in the stock. Like ours, Dalgaard 
et al.’s (2019) model of health defi­cits also pre­dicts that in utero shocks will result 
in health gaps that increase with age among adults. However, our model predicts 
a U-shaped pattern of effects rather than a monotonically increasing effect. This 
U-shape results from our having an early childhood period in which investments 
move the distribution of health up.17 These results also suggest that it is impos­
sible to identify the effects of in utero shocks with health data for adolescents or 
young adults only.

Mortality

Mortality at all ages also increases when initial conditions worsen (Figure 7, panel 
c). Again, the age patterns depend on the metrics used. When measured in levels, 
the effects are U-shaped. The intuition for this U-shaped pattern is simple. Among 
adolescents and young adults, the average health level is high, and very few indi­
viduals are close to the threshold, so shifting the distribution of health has very little 
impact on mortality. But shifts in the distribution will result in higher death rates 
when the distribution gets closer to the threshold at older ages. When expressed 
in percentage terms, however, the predicted effects of negative in utero shocks on 
mortality fall with age (although this pattern is not necessarily monotonic: in mid­
dle age, when mortality levels are low, the effects can rise and fall because of the 
small number of deaths).

An important implication of our simulations for the empirical literature is that the 
predictions for the dynamic effects of shocks on mortality are sensitive to the func­
tional form one chooses for studying its effects.

Scarring Effects of Wars

Wars have long-lasting detrimental health effects among survivors. Such scarring 
effects have been documented in at least 13 European countries after World War II. 
Compared with less-exposed survivors, individuals who were more exposed to the 
war experienced worse economic and health outcomes that persisted several decades 
later (e.g., Havari and Peracchi 2017; Kesternich et al. 2014). Similarly, Wilson et al. 

17  With data on health over the life­time, these dif­fer­ent pre­dic­tions could be ver­i­fied.
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2128 A. Lleras-Muney and F. Moreau

(2014) showed the persistence of higher mortality rates among New Zealand military 
personnel who served during the war than among those who did not.

Suppose we model war episodes as reducing health resources (I).18 Panel a of 
Figure 8 shows the mortality curves obtained from estimating the model for men 
born in 1896 with two shocks: a four-year decline in I at age 18 (corresponding 
to the com­bined effects of World War I and the 1918 flu pan­demic) and a six-year 
decline in I at age 43 (corresponding to the effects of World War II). This sim­
ple characterization of the wars delivers a mortality curve (red dotted line) that 
is remarkably close to the data (blue line). When the war shocks are eliminated, 
mortality falls during the war and at all subsequent ages (red dashed line). Thus, 
the model predicts the scarring effects that other authors have documented: the 
mortality rates for the affected cohort are persistently higher than those for unaf­
fected cohorts, both during the war and after. We estimate that World War I lowered 
life expectancy by approximately 16 years for this cohort, and that World War II 
lowered it by another 2 years.19

Harvesting Effects

Extreme weather or pollution events appear to displace the distribution of deaths in 
the short term, creating a sudden increase in the number of deaths followed by abnor­
mally low mor­tal­ity. In demog­ra­phy, this phe­nom­e­non is known as “harvesting” and 
has been, for instance, documented in France during the 2003 heat wave (Toulemon 
and Barbieri 2008).20

How can the model rationalize this pattern? Suppose that the death threshold is 
a function of the environment (H = H E( ), ′H > 0). Panel b of Figure A17 shows 
the simulated effect of a temporary increase in the threshold at ages 60 and 61 on 
the mortality of the 1816 cohort. This temporary increase results in very high initial 
mortality that starts dropping before the shock ends because the frailest individuals 
have already died. Once the weather disruption ends and the threshold is restored 
to its original (lower) level, mortality falls even more because there are very few 
individuals close to the new lower threshold. Mortality remains below its coun­
terfactual level until the aging process lowers health stocks again. Thus, a death 
threshold change generates harvesting, and it does so by killing the least healthy 
individuals in the cohort. A key characteristic of a threshold change is that it does 
not affect the health of the living.21

18  This assumption is consistent with historical data for World War II. GDP declined during the war, and 
the Germans appropriated 20% to 55% of it during the occupation (Occhino et al. 2007). Food rationing 
began in 1940. We can assume that the war is a dif­fer­ent type of shock, but we do not obtain bet­ter fits 
with these alternatives.
19  The fit for this cohort can be improved if we allow every year of a war to have its own effect instead of 
imposing an equal annual shock during wars (Table A5).
20  See Schwartz (2000) and Zeger et al. (1999) for the effects of pollution; see Deschênes and Moretti 
(2009) and Deschênes and Greenstone (2011) for the effects of extreme temperatures.
21  Weather shocks may affect survivors’ health. See Deschênes and Moretti (2009) and Deschênes and 
Greenstone (2011) for a discussion.
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Fig. 8  Scarring and harvesting effects. Panel a shows the scarring effect of World War I on mortality rates 
for men born in France in 1896 who turned 18 when the war started in 1914 and who would have served 
in the military. The solid blue line shows the observed mortality rates for this cohort. The dotted red line 
shows the predicted mortality rates that result from estimating the model and including an additional 
parameter for World War I and another for World War II. We allow for I to differ during each war. The 
counterfactual curve (dashed red line) shows what the mortality curve would look like in the absence of 
World War I by predicting what the rates would have been in the absence of a decline in I during that war. 
Panel b shows the simulated effects of a temporary increase in the threshold (from 0 to 0.8) at ages 60 and 
61 in the 1816 French cohort (setting the accident rate to 0 for simplicity). The y-axis plots the relative 
number of deaths in the affected population divided by the number of deaths in the unaffected population. 
The figure shows that deaths are shifted earlier. This displacement is estimated to result in approximately 
8,000 excess deaths during the shock and fewer deaths in the subsequent two years.
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Heat waves and other forms of bad weather also generate excess mortality 
among children (Figure A17, panel b), but the displacement effect is substantially 
more spread out. In other words, the children who die as a result of the bad weather 
would not die immediately after the bad weather ends; they would live substan­
tially longer lives. (Among children, investment levels are high relative to depreci­
ation, and mortality is falling, whereas depreciation is large and mortality increases 
among the elderly.)

The Effects of Temporary and Permanent Shocks

The previous two sections illustrate the effects of temporary changes in I  or H , but 
they do not compare their effects on the same scale because we aimed to reproduce 
published results. Figure A18 shows how log mortality rates respond to all types of 
temporary shocks. Each shock leaves a unique imprint on mortality rates. Temporary 
investment and depreciation decreases have similar scarring effects: mortality rises 
when the shock starts and then starts falling after the shock ends, but it does not return 
to its counterfactual level. On the other hand, only changes in the threshold generate 
harvesting. Only variance changes result in a crossover of mortality rates at old ages, 
and only accident increases leave mortality rates unchanged once the shock ends. 
Figure A19 further reveals that the pattern of these responses over time is not the 
same when viewed in logs or levels. For comparison, Figure A20 shows the effects of 
permanent shocks on all parameters in levels and logs.

Optimization

So far, we considered a population that receives constant investments over the life­
time. In online appen­dix E, we esti­mate the opti­mal invest­ment pro­file that a social 
planner would choose to maximize life expectancy. We assume that the planner has 
a fixed life­time bud­get and the abil­ity to bor­row and save cost­lessly, so the plan­ner 
can invest different levels of I at different ages so long as they add up to the total 
budget.22 We find that the opti­mal strat­egy for max­i­miz­ing life expec­tancy is to redis­
tribute resources from prime-aged adults to children and the elderly. Doing so would 
increase the life expectancy of French women born in 1816 by three years—a con­
siderable but smaller gain than observed in the data. After optimization, the resulting 
sur­vival curves are flat­ter in adult­hood and steeper at old ages, suggesting that the 
rectangularization of survival is partly due to the emergence of optimization.

Conclusion

We propose a parsimonious production function to study the evolution of health 
and mortality over the life course of a population born with heterogeneous health 

22  This is a standard assumption (e.g., see Murphy and Topel 2006).
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endowments. Despite its simplicity, this model tracks the evolution of the mortality 
pro­file of human cohorts born in 1816–1940, as well as non­hu­man pri­ma­tes. Further, 
the model can explain many important mortality patterns documented in the litera­
ture, including the rectangularization of survival curves and SES gradients in health. 
We also show how to use the model to understand the dynamic treatment effects of in 
utero shocks and other temporary events, such as wars.

The model’s parsimony relies on transparent but strong parametric assumptions. 
In particular, we assume that the environment is stable and exogenously provides a 
constant level of resources. These assumptions are reasonable for primates or early 
human populations but not for contemporary populations with access to saving tech­
nologies, growing GDP, and medical innovations. We explore how to incorporate 
changes in the environment into the model, but further progress could be made by 
using data on environmental changes as inputs and by making restrictions across 
cohorts. We also assume that health shocks are independent and identically distrib­
uted, and normally distributed. Alternative assumptions for this distribution of annual 
shocks could be further investigated. The model can also be expanded to consider 
the role of behavior and policy. Our preliminary analysis suggests that in the absence 
of finan­cial fric­tions, opti­mal health expen­di­tures are U-shaped over the life­time in 
this model. With additional data, the implications of optimizing behavior could be 
explored fur­ther. We leave these explo­ra­tions to future research. ■
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