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Hazard Versus Linear Probability Difference-in-Differences 
Estimators for Demographic Processes

Lawrence L. Wu and Fangqi Wen

ABSTRACT  This study examines the properties of the linear probability difference-in- 
differences estimator when the data are in fact generated by a single-decrement,  
continuous-time hazard process. We focus on the textbook case of two groups and two 
periods in which the control and treatment groups are observed before and after treat
ment. We provide formal derivations and illustrate matters concretely by reexamining 
economic studies that have relied on the linear probability difference-in-differences  
estimator when attempting to obtain estimates of the causal effect of unilateral and 
no-fault divorce. In particular, we show that the increasing then decreasing pattern 
of effects found by Wolfers (2006) can be generated by a time-invariant effect of 
treatment in a proportional hazard setting. We conclude that often implicit assump
tions about how the data are generated are an important and necessary component 
of causal identification.

KEYWORDS  Data-generating function  •  Difference-in-differences estimation  •  
Dynamic response to treatment  •  Linear probability and proportional hazard  
regression  •  Unilateral and no-fault divorce

Introduction

Difference-in-differences (DD) procedures are perhaps the method most heavily used 
to obtain plausibly causal estimates from observational data for treatments such as 
an exogenously imposed change in policy. The popularity of such DD procedures 
stems in no small part from their use with a wide range of data, including panels that 
follow individuals over time but also repeated cross sections for outcomes observed 
at the aggregate level for geographic units such as states or counties. Early examples 
include Ashenfelter and Card (1985) on the effect of job training programs on earn
ings and Card and Krueger (1994) on the effect of increases in the minimum wage on 
the demand for labor. Linear probability DD procedures have likewise been heavily 
used in analyses of binary outcomes.

In this study, we present formal results that question the use of the linear prob
ability DD when the binary outcome of interest is a single-decrement hazard 
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process involving the transition from a common origin state to a single destination 
state. Examples include not only the traditional demographic outcomes of fertil
ity, mortality, and migration, but also marriage, divorce, cohabitation, and spells 
of unemployment or program participation. For these and other hazard processes, 
life table methods and their regression extensions have been the method of choice 
in demography, epidemiology, public policy, sociology, and statistics, as well as 
in an older literature in economics that provided significant contributions to these 
methods.

We present formal derivations for the properties of the linear probability DD 
when the data are in fact generated by a continuous-time, single-decrement haz
ard process. We focus throughout on the textbook case of two groups and two 
periods in which the control and treatment groups are observed before and after 
treatment. Our formal derivations show that the linear probability DD will not 
only yield estimates that evolve with time since treatment but can also be oppo
site in sign from the true effect of treatment when the data are generated by a 
hazard process.

It is well-known that numerous issues arise when using logit or probit  
difference-in-differences procedures for a binary outcome (Ai and Norton 2003; 
Athey and Imbens 2006; Puhani 2012). Heckman (1996), among others, criticized 
these and other difference-in-differences procedures by noting the arbitrariness of 
such functional form assumptions. Nonlinearities are also key to our central result—
that the linear probability DD will yield estimates that evolve with time since  
treatment if the data are generated by a hazard process. But as shown in the fol
lowing, our formal result holds generally for single-decrement hazard processes 
that differ arbitrarily for treatment and controls.

To illustrate matters concretely, we reexamine findings by economists on unilat­
eral and no-fault divorce (Friedberg 1998; Iyavarakul et  al. 2011; Lee and Solon 
2011; Wolfers 2006). In particular, we find that the increasing then decreasing pat­
tern of effects noted by Wolfers (2006) can be generated by a time-invariant effect of 
treatment in a proportional hazard setting. More generally, our formal results empha
size that causal identification also requires assumptions, often implicit, on how the 
data are generated.

The article is organized as follows. We begin with the textbook case of two 
groups and two periods to derive the formal properties of the linear probability DD 
when the data are generated by a continuous-time hazard process. We then propose 
a three-step Cox estimation procedure for the proportional hazard DD that, to our 
knowledge, has not been previously discussed. Results from Monte Carlo simu
lations show that this estimator appears to perform well in practice. We then turn 
to a review of the empirical literature on unilateral and no-fault divorce, followed 
by results from a stylized example using empirical estimates of the baseline risk 
of divorce from the marital supplements to the June 1980, 1985, 1990, and 1995 
Current Population Surveys. These results show that the increasing then decreasing 
pattern of estimates noted by Wolfers (2006) can be generated by a time-invariant 
effect of treatment in a proportional hazard setting. We conclude with some sum
mary remarks.
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1913Hazard Versus Linear Probability Difference-in-Differences Estimators

Formal Derivations

For the textbook case of two groups and two periods, the linear probability DD can 
be written as

	 pi = b0 + b1 × gi + b2 × Ii + ddlp × gi × Ii , 	 (1)

where pi denotes the probability of the binary outcome, i indexes individuals, and 
g and I  are dummy variables for the two groups and two periods, respectively, with 
g = 0 referring to the control group, I = 1 to the period in which treatment occurs, and 
ddlp to what we will call the “linear probability DD.”

From Eq. (1), we have
p(g = 0,  I = 0) = b0

p(g = 0,  I = 1) = b0 + b2

p(g = 1,  I = 0) = b0 + b1

p(g = 1,  I = 1) = b0 + b1 + b2 + ddlp

ddlp = p(g = 1,  I = 1)− b0 − b1 − b2 ,

and hence that

ddlp = p(g = 1,  I = 1)− p(g = 1,  I = 0)⎡⎣ ⎤⎦ −

p(g = 0,  I = 1)− p(g = 0,  I = 0)⎡⎣ ⎤⎦. 	 (2)

Figure 1 depicts the four components of the linear probability DD.
Intuitively, the double difference in Eq. (2) can be seen as exploiting the (presumed) 

exogeneity of treatment and treatment timing while confronting the fact that neither 
controls nor treatments were randomly assigned. For concreteness, let the two groups 
be two U.S. states and the treatment be the introduction of unilateral and no-fault 

t1 t t2

g = 0

g = 1

I = 0 I = 1

Pr(g = 0, I = 0)

Pr(g = 1, I = 0)

Pr(g = 0, I = 1)

Pr(g = 1, I = 1)

Fig. 1  The four components of the linear probability difference-in-differences estimator for two groups 
and two periods.
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divorce. Then to fix ideas, suppose that the true causal effect of unilateral and no-fault 
divorce is to increase divorce—that some in troubled marriages in the state that will 
receive treatment would not seek to divorce pretreatment but would do so posttreat-
ment. But the fact that controls and treatments were not assigned at random means that 
it will not suffice to compare controls and treatments in the posttreatment period if, for 
example, the pretreatment level of divorce in the state that will later adopt unilateral 
and no-fault divorce is higher than in the state that will not. Thus, the double difference 
in Eq. (2) can be seen as accounting for this possibility in two (equivalent) ways. A first 
is to note that the DD in Eq. (2) adjusts for divorce trends by subtracting the difference 
in divorce between periods 2 and 1 for controls from the same quantity for treatments. 
A second is to note that Eq. (2) adjusts the naive comparison of controls and treatments 
in the posttreatment period by acknowledging that the nonrandom assignment of con
trols and treatments makes it likely that there were preexisting differences in divorce 
between controls and treatments in the pretreatment period.

The foregoing provides intuition into the logic of a difference-in-differences strat
egy, but Eq. (1) presumes that the linear probability DD is appropriate for a binary out
come such as divorce. But what if we were instead to view divorce as a continuous-time 
hazard process? We discuss the highly general case in which divorce in the two groups 
is given by two arbitrary hazard functions, rg=0  and rg=1 , but here we consider a pro
portional hazard DD that is the natural analog to the linear probability DD in Eq. (1):

r(t|t0 ) = r0(t − t0 ) exp b1 × gi + b2 × Ii(t)+ ddhz × gi × Ii(t)⎡⎣ ⎤⎦

or equivalently

	 log r(t|t0 ) = log r0(t − t0 )+ b1 × gi + b2 × Ii(t)+ ddhz × gi × Ii(t), 	 (3)

where t  denotes calendar time, t0 the calendar start of marriage, u = t − t0 marital dura
tion, r0 the so-called baseline hazard, I(t) a time-varying dummy variable equal to 1 
in the posttreatment period, and ddhz the hazard difference-in-differences estimator.

If treatment and treatment timing are credibly exogenous for the linear probability 
DD, this too will hold equally for a hazard DD. Similarly, the same algebra relating 
Eqs. (1) and (2) can be used to reexpress ddhz in Eq. (3) as a double difference, albeit 
for differences involving log r:

ddhz = log r(g = 1,  I(t) = 1)− log r(g = 1,  I(t) = 0)⎡⎣ ⎤⎦ −

log r(g = 0,  I(t) = 1)− log r(g = 0,  I(t) = 0)⎡⎣ ⎤⎦. 	 (4)

Could one modify the linear probability DD in Eq. (1) to mimic the proportional 
hazard DD in Eq. (3) by adding right-hand-side terms for marital duration? The 
answer is no, as can be seen by considering intervals of the form [u, u + Δ], Δ > 0.  
Then note that a key difference between the linear probability and hazard DD is that 
the latter compares the risk of divorce for controls and treatments in the interval 
[u, u + Δ], whereas the former does so for the probability of divorce. The issue then 
is that the linear probability DD ignores the fact that the comparison of divorce log
ically requires that divorce has not yet occurred as of the start of [u, u + Δ]. By con
trast, hazard analyses of divorce condition on those marriages that have survived as 
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1915Hazard Versus Linear Probability Difference-in-Differences Estimators

of the start of [u, u + Δ], with the classic life table taking Δ to be some fixed positive 
constant and the continuous-time hazard taking the limit as Δ ↓ 0. Stated more for
mally, let u denote marital duration and U  denote the random variable for duration; 
then the continuous-time hazard will be given by

r(u) = lim
Δ  ↓ 0

Pr (u <U ≤ u + Δ|U > u)
Δ

= f (u)
S(u)

,                                            

where f (u) and S(u) denote the probability density and survivor probability functions 
for divorce. This textbook definition shows that r(u) differs from the unconditional prob
ability of divorce by requiring that r(u) be defined only for marriages that survive to u.

The plausibility of causal claims from the linear probability DD requires the 
so-called “parallel trend” assumption—that net of level differences, controls and 
treatments are comparable to one another pretreatment and would continue to be com
parable to one another were the treatment group not to have been treated in the post-
treatment period. The corresponding comparability assumption for the proportional 
hazard DD is that controls and treatments share the common baseline hazard r0(u).

Finally, we note that a potential confound not well controlled by the linear probabil
ity DD is that treatment will occur at different marital durations for those from different 
marriage cohorts. It is thus natural in the two-group, two-period hazard case to adopt a 
cohort design in which the two groups are drawn from a single marriage cohort, with 
groups g = 0 and g = 1 thus beginning marriage at the same calendar time t0.

We now turn to the central question posed in this study, which is what ddlp esti
mates if divorces are in fact generated by a continuous-time hazard process. Let τ 
denote the calendar time of treatment, t0 the calendar time at start of marriage, and 
[τ1, τ] and [τ, τ2] the pre- and posttreatment periods, respectively. Then as shown in 
Figure 2, the pre- and posttreatment probability of divorce, depicted by the two red 

t0 t1 t t2
Fig. 2  The probability of divorce pre- and posttreatment as a function of the survivor probability when data 
for divorce are generated by a continuous-time hazard process.
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vertical bars, will be given by simple differences of the survivor probability, that is, 
the probability that the event of interest has not yet occurred.

Turning now to the general case in which the risk of divorce varies arbitrarily for 
treatments and controls, let rg=0(u) and rg=1(u) denote two arbitrary hazards functions 
of marital duration. Then Sg (u), the probability of survival at duration u for group g,  
will be given by

	 Sg (t|t0 ) = Sg (u) = exp − 0
t  − t0∫ rg (s)ds⎡

⎣
⎤
⎦. 	 (5)

Let ddlp(hz ) denote the linear probability difference-in-differences estimator if divorces 
are in fact generated by the arbitrary hazard functions rg=0  and rg=1. Then, as shown in 
Figure 2, ddlp(hz ) will be given in expectation by

ddlp(hz ) = E p(g = 1,  I(t) = 1)⎡⎣ ⎤⎦ − E p(g = 1,  I(t) = 0)⎡⎣ ⎤⎦{ }−
E p(g = 0,  I(t) = 1)⎡⎣ ⎤⎦ − E p(g = 0,  I(t) = 0)⎡⎣ ⎤⎦{ }

= Sg=1(τ|t0 )− Sg=1(τ2|t0 )⎡⎣ ⎤⎦ − Sg=1(τ1|t0 )− Sg=1(τ|t0 )⎡⎣ ⎤⎦{ }−
Sg=0(τ|t0 )− Sg=0(τ2|t0 )⎡⎣ ⎤⎦ − Sg=0(τ1|t0 )− Sg=0(τ|t0 )⎡⎣ ⎤⎦{ }. 	 (6)

Thus if divorces are generated by rg=0 and rg=1, then Eq. (6) shows that the prob
ability of divorce in the pre- and posttreatment periods will be a more complicated 
function than assumed by the linear probability DD. Recall that the probability 
of divorce for group g in period I  under the linear probability DD in Eq. (1) is a 
simple function of the regression parameters b0, b1, and ddlp. By contrast, Eq. (6) 
shows that for the proportional hazard DD in Eq. (3), the probability of divorce for 
group g  in period I  will continue to be a function of b0, b1, and ddhz, but will also 
depend on: (1) t0 , the calendar time when marriage begins; (2) [τ1, τ] and [τ, τ2], 
the intervals defining the pre- and posttreatment periods; and (3) Sg (t | t0 ), the sur
vival probability for group g.1

Theorem: Let rg=0(u)  and rg=1(u) be any two arbitrary hazard functions subject 
only to the condition that Sg=0  and Sg=1  be continuous and equal to 1 at the start 
of marriage; then ddlp(hz )  will evolve with time since treatment.

Proof

From Eq. (6), we have that ddlp(hz )  is a function of τ2 via the two terms Sg=0(τ2|τ) and 
Sg=1(τ2|τ). Then

	 ddlp(hz ) = Sg=0(τ2|t0 )− Sg=1(τ2|t0 )+ c1, 	 (7)

where

	 c1 = [2Sg=1(τ|t0 )− Sg=1(τ1|t0 )] –  [2Sg=0(τ|t0 )− Sg=0(τ1|t0 )] 	 (8)

1  For an explicit expression for the proportional hazard ddlp(hz ) in Eq. (3), see the online supplement.
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1917Hazard Versus Linear Probability Difference-in-Differences Estimators

is a time-invariant constant for all τ2 > τ. From Eq. (6), we have that ddlp(hz ) will 
evolve with time since treatment unless

	 Sg=1(τ2|t0 )− Sg=0(τ2|t0 ) = c2 ∀ τ2 > τ 	 (9)

for some constant c2. The condition in Eq. (9) requires that Sg=0  and Sg=1 be parallel 
for all τ2 > τ, which will not hold in general except in three degenerate cases. To see 
this, first note that the condition that Sg=0  and Sg=1 will both equal 1 at t0 implies that 
Sg=0 and Sg=1 cannot be parallel for all t ≥ t0 except in the degenerate case in which 
rg=0 = rg=1.2 However, Eq. (9) requires only that Sg=0 and Sg=1 be parallel for t > τ .  
This too is highly restrictive, yielding two additional degenerative cases. We thus 
have that ddlp(hz ) will always evolve with time since treatment except in the following 
scenarios:

1.	 If rg = 0(t) = rg  =  1(t) ∀ t ∈[t0 , ∞] (no group differences and no effect of treatment);
2.	 If Sg = 0(t) = Sg  =  1(t) = 0 ∀ t ∈[τ, ∞] (no posttreatment survivors); or
3.	 If rg = 0(t) = rg  =  1(t) = 0 ∀ t ∈[τ, ∞] (no posttreatment events).

Remarks

From Eq. (5), we have that the survivor probability will be a monotonically declining 
(more precisely, nonincreasing) function of marital duration; hence, the arithmetic 
difference of two such functions will also vary with marital duration, including mar
ital durations in the posttreatment period. This implies that ddlp(hz ) is not a constant 
as assumed in the linear probability DD in Eq. (1), but will instead take values that 
evolve with time since treatment except in the foregoing three degenerate cases. The 
first is when divorce risks are identical for controls and treatments both pre- and 
posttreatment, which further implies no effect of treatment. The second involves so-
called nondefective distributions for outcomes such as mortality in which all will 
experience the event of interest eventually. The third involves defective event distri
butions in which some will never experience the event of interest; examples include 
divorce, with some married couples never observed to divorce even when followed 
for a long time. The second and third degenerate cases then arise if the posttreatment 
period coincides with the period in which there are no survivors (Case 2) or no events 
(Case 3), respectively.

More fundamentally, Eq. (1) supposes that divorce is akin to a biased coin flip and 
hence that the effect of treatment is also akin to a biased coin flip. By contrast, Eq. (3) 
supposes that divorce is a continuous-time process involving the transition from an 
origin state (marriage) to a destination state (divorce). Thus under Eq. (3), divorces 
occur with exposure to risk, implying in turn that the probability of remaining mar
ried will be a nonincreasing function of marital duration.

Corollary (incorrect sign): ddhz > 0! ddlp hz( ) > 0.

2  Requiring that Sg=0 and Sg=1 be equal to 1 at the start of marriage t0  rules out the case in which the haz
ard functions are identical for the two groups except at t0, where the hazard for one group has a point mass 
spike such that S(t0) is strictly less than 1 for one group but equal to 1 for the other group.
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In Figure 3, we provide a simple example in which the linear probability and 
proportional hazard DD can be opposite in sign. In this example, we assume that 
divorces are generated by the proportional hazard specification in Eq. (3) and hence 
that ddhz  is the “true” causal effect of treatment. For computational convenience, 
we have taken the baseline hazard r0(u) to be a constant λ  equal to 0.008 divorces 
per month, thus yielding an exponential distribution for the timing of divorce, with 
the survivor function given, for example, by S(u) = exp(−λu) for g = 0 and I(u) = 0.  
We also assume throughout that: (1) marriage begins at calendar time 0 (t0 = 0) for 
both controls and treatments; (2) observation begins two years after the start of 
marriage (τ1 = 24 months); and (3) the regression coefficients in Eq. (3) take the 
values b1 = b2 = ddhz = 0.10. Then given the foregoing, the only difference between 
panels a and b in Figure 3 is when treatment begins, at τ = 60 months and τ = 90 
months, respectively, thus implying a shorter pretreatment period in panel a than 
in panel b.

 a
dd
dd
llpp

((hh
zz ))

−0.02

−0.01

0.00

0.01

0.02

Time Since Treatment

b

dd
dd
llpp

((hh
zz))

−0.02

−0.01

0.00

0.01

0.02

Time Since Treatment

Fig. 3  Behavior of ddlp(hz ) with time since treatment for an example in which the data are assumed to be 
generated according to the proportional hazard DD in Eq. (3). In both panels a and b, the baseline hazard 
r0(u) is set equal to a constant λ =  0.008; the regression coefficients b1, b2, and ddhz are assumed equal and 
set to 0.10; the calendar start of marriage, t0, is set to 0; and the start of observation, τ1, is set to 24 months. 
In panel a, treatment begins at τ = 60 months of marital duration, while in panel b, treatment begins at 
τ = 90 months.
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As expected, panel a shows that ddlp(hz ) evolves with time since treatment, first 
rising to a peak and then declining, with ddlp(hz ) wrong in sign immediately after treat
ment and at longer durations since treatment, but correct in sign in between. Panel 
b provides a more extreme example, with ddlp(hz ) always negative and hence always 
wrong in sign.

In Figure 3, the values of ddlp(hz ) first rise then decline, but different values of 
b1, b2 , ddhz , or  λ can imply patterns in which ddlp(hz ) appears to decrease then 
increase or increases (or decreases) monotonically with time since treatment. (Results 
are available upon request.)

Estimation and Finite Sample Behavior of the Proportional Hazard DD

The formal derivations and examples discussed thus far provide a cautionary tale of 
what not to do—that is, how researchers can be badly misled by a linear probabil
ity DD when the data are in fact generated by a proportional hazard DD. Note also 
that the examples in Figure 3 hold in expectation and thus illustrate how ddlp(hz ) will 
evolve with time since treatment when the sample size of controls and treatments 
increases without bound. But what these derivations and stylized results do not speak 
to is how to estimate the hazard ddhz in practice.

In this section, we propose a three-step estimator that shows how one can use 
the popular Cox model (Cox 1972) to obtain empirical estimates of ddhz. We pres
ent Monte Carlo results that suggest that this procedure performs reasonably well in 
simulations in which the “true” value of ddhz is known.

To fix ideas, we begin by first rearranging terms in Eq. (4) as

ddhz = log r(g = 1,  I(t) = 1)− log r(g = 0,  I(t) = 1)⎡⎣ ⎤⎦ −

	
log r(g = 1,  I(t) = 0)− log r(g = 0,  I(t) = 0)⎡⎣ ⎤⎦ ,

	
(10)

with the two bracketed terms referring to the posttreatment and pretreatment contrast 
between treatment and controls, respectively. This then suggests the following three-
step estimation procedure:

1.	 Obtain an estimate of the first bracketed term using a Cox model and data from 
the posttreatment period.

2.	 Similarly, obtain an estimate of the second bracketed term using a Cox model 
and data from the pretreatment period.

3.	 Then estimate ddhz via the arithmetic difference of these two estimates.

The rationale for using a Cox model in this procedure is that it yields asymptoti
cally consistent and efficient estimates of proportional hazard regression parameters 
for an arbitrary baseline hazard r0, thus allowing the analyst to obtain estimates in 
steps 1 and 2 without parametric assumptions about how divorce risks vary with mar
ital duration in the pre- and posttreatment periods.

Deriving the asymptotic properties of the above three-step estimator is beyond 
the scope of this article, but we provide results from simulations that provide some 
sense of how well it may perform in practice. We begin with simulations that 
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1920 L. L. Wu and F. Wen

continue the example in panel a of Figure 3 in which the data are assumed to be 
generated by the proportional hazard DD in Eq. (3) with a constant baseline haz
ard λ = 0.008  and with b1 = b2 = ddhz = 0.10. We also assume a balanced design in 
which there are equal numbers in the control and treatment groups at the start of 
marriage. Figure 4 shows that estimates of ddhz appear to follow a normal distri-
bution that becomes more peaked as n increases, with the mean of the simulated 
estimates close to the true value ddhz = 0.10.

Table 1 presents in tabular form the results from our Monte Carlo simulation for 
ddhz corresponding to panels a and b in Figure 3. As in Figure 3, the two sets of esti
mates in Table 1 differ only in whether treatment begins at calendar time 60 or 90 
months. The estimates of ddhz exhibit some upward bias when treatment begins at 
90 months, but the estimates in both cases remain within two standard deviations of 
0.10, the true value of ddhz as assumed in the Monte Carlo simulations.

Overall, Figure 4 and Table 1 provide suggestive evidence that a Cox model can 
be used to obtain reasonably precise estimates for the effect of treatment in a hazard 
difference-in-differences design in which n ≥ 5,000 in both the control and treatment 
groups.

dd llpp

Mean = 0.10053, n = 5,000

Mean = 0.09944, n = 10,000

Mean = 0.10061, n = 20,000

−0.2 −0.1 0.0 0.1 0.2 0.3 0.4

Fig. 4  Approximate normality by sample size of estimates of ddhz. The simulated data were generated 
according to the proportional hazard DD in Eq. (3), with the baseline hazard r0(u) set equal to a constant  
λ = 0.008; the regression coefficients b1, b2, and ddhz are assumed equal and set to 0.10; the start of obser-
vation, τ1, is set to 24 months; and τ , the start of treatment, is set to 60 months.
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A Stylized Reexamination of Findings on Unilateral  
and No-Fault Divorce

Although a large demographic literature has documented trends in, and the fac
tors associated with, the dissolution of marital unions, it has been economists who 
have posed the causal question of whether the introduction of unilateral and no-fault 
divorce laws caused an increase in divorce (Friedberg 1998; Iyavarakul et al. 2011; 
Lee and Solon 2011; Wolfers 2006), with two of these studies (Friedberg 1998;  
Wolfers 2006) appearing in the American Economic Review, the flagship journal of 
the American Economic Association.

Because laws at the state level govern divorce in the United States, these studies 
all relied on state-level data and a linear probability difference-in-differences design 
to identify the causal effect of the shift from laws requiring the mutual consent of 
both spouses to a legal standard allowing one spouse to seek divorce on grounds such 
as the irretrievable breakdown of the marriage, spousal incompatibility, or irreconcil
able differences. These studies also considered the possibility that trends in divorce 
may have varied considerably across states during the period when the shift to uni
lateral and no-fault divorce was taking place, thus complementing empirical studies 
documenting historical trends in divorce in the United States as a whole (Cherlin 
1991; Preston and McDonald 1979).

Friedberg (1998) was the first to use a linear probability DD to estimate the effect of 
unilateral and no-fault divorce. Friedberg used divorce registers for the period 1968–
1988 to construct pre- and posttreatment panel data on the annual number of divorces 
per 1,000 persons for the 50 states and the District of Columbia. In models specify
ing state and calendar year fixed effects and state-specific linear and quadratic trends, 
Friedberg’s DD estimates implied increases of between 0.441 and 0.447 divorces per 
1,000, or a roughly 9.5% and 9.7% increase, respectively, on a baseline of 4.6 divorces 
per 1,000. Friedberg obtained similar estimates when distinguishing between the strin
gency of unilateral and no-fault divorce decrees, obtaining estimates implying increases 
of 9.7% to 11.9%. These results led Friedberg to conclude that “the effect of unilateral 
divorce on divorce behavior was permanent, not temporary” (Friedberg 1998:608).

Wolfers (2006) provided both a replication and critique of Friedberg. Analyzing 
data generously provided to him by Friedberg, he replicated her estimate of a roughly 

Table 1  Means and standard deviations of Cox estimates of ddhz  by sample size

Treatment at Calendar Time 60 Months Treatment at Calendar Time 90 Months

Mean SD n Mean SD n

0.10053 0.07082 5,000 0.10520 0.05503 5,000
0.09944 0.04310 10,000 0.10486 0.04064 10,000
0.10061 0.03242 20,000 0.10471 0.02771 20,000

Note: The simulated data were generated according to the proportional hazard DD in Eq. (3), with the base
line hazard r0(u) set equal to a constant λ = 0.008; the regression coefficients b1, b2, and ddhz are assumed 
equal and set to 0.10; the start of observation, τ1, is set to 24 months; and τ , the start of treatment, is set 
at 60 or 90 months.
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10% increase in divorce when using Friedberg’s preferred linear probability specifi­
cation. He then raised the possibility that married couples might respond dynamically 
to the introduction of unilateral and no-fault divorce. To investigate this empirically, 
he modified the linear probability DD specified by Friedberg to allow the effect of 
treatment to vary with time since treatment. In analyses of data in which he extended 
Friedberg’s panel to cover the period 1958–1967, he obtained estimates that first 
increased then decreased with time since treatment. These results led Wolfers to con
clude, in contrast to Friedberg, that there “is no evidence that this rise in divorce is 
persistent” but also that his results “suggest—somewhat puzzlingly—that 15 years 
after reform the divorce rate is lower as a result of the adoption of unilateral divorce, 
although it is hard to draw any strong conclusions about long-run effects” (Wolfers 
2006:1802).3

In a study that anticipated in part some of the issues we raise, Iyavarakul et al. 
(2011) proposed a theoretical model to account for the apparent variation in the esti
mated effect of unilateral divorce with time since treatment. In their model, the time-
varying effect of no-fault divorce is due to the forward-looking behavior of three 
distinct groups of married couples: (1) those who marry and divorce prior to treat
ment; (2) those who marry after treatment and whose selection into marriage was 
therefore influenced by treatment; and (3) those who marry before, but remain mar­
ried after, treatment and who are therefore “surprised” by treatment. Their model 
thus implies that selection into marriage will differ for these three groups and that the 
effect of treatment will likewise differ across groups. A core element of their behav
ioral model thus concerns the behavior of successive marriage cohorts; however, their 
analyses rely on the same aggregate panel data assembled by Friedberg and Wolfers, 
thus leading them to model the outcome as the probability of divorce in a given state, 
year, and treatment by group cell.

Lee and Solon (2011) reanalyzed the data used by Wolfers and concluded that the 
increasing then decreasing pattern of estimates reported by Wolfers is highly sensi
tive to functional form, autocorrelation, weighting, and other issues. For example, 
they found little effect of unilateral divorce when analyzing the natural logarithm 
of divorces per capita as well as substantial first- and higher order autocorrelations 
among the residuals in the weighted least-squares specifications used by Wolfers. 
They concluded that “the true impact of unilateral divorce laws remains unclear” 
(Lee and Solon 2011).

The data analyzed in these studies were either Friedberg’s original data or Wolfer’s 
additions to the Friedberg data; hence, the number of divorces per 1,000 persons 
in a given state and calendar year is the analytic outcome used in all four studies.4  

3  To motivate dynamic response to treatment, Wolfers (2006:1806) sketched a simple model that posited 
heterogeneity in the “compatibility” of married couples and in which “under consent divorce laws, the  
20 percent most incompatible matches dissolve [while] under unilateral divorce, this rises to 20.4 percent.” 
He also provided an important and insightful discussion of issues from a stock and flow point of view, 
although data limitations precluded him from conducting such a stock and flow analysis. Formulating 
divorce as a hazard process provides a natural framework for modeling outflows from the stock of marriage 
due to divorce. See, for example, the hazard analyses in Preston and McDonald (1979) for outflows from 
marriage due to death and divorce, and Klerman and Haider (2004) for outflows from the stock of welfare 
recipients due to policies placing time limits on the receipt of welfare.
4  Lee and Solon (2011) analyze both divorces per capita and log divorces per capita.
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As acknowledged by Friedberg (1998:611), this measure differs from a period rate 
such as the number of divorces per 1,000 marriages. Note that divorces per 1,000 
persons will be downwardly biased relative to divorces per 1,000 marriages because 
the denominator for the former will be substantially larger than the denominator for 
the latter.

A more fundamental issue is the precise question being posed when analyzing 
divorce probabilities using measures such as divorces per capita versus the risk of 
divorce using measures such as divorces per 1,000 marriages. In the foregoing DD 
analyses, the number of divorces per capita in state s and calendar year t would appear 
to be interpretable in much the same way as a period divorce rate given by divorces 
per 1,000 marriages, with both ostensibly capturing change in divorce behavior. But 
because the two measures differ by the multiplicative factor of marriages per cap
ita, trends in divorces per capita can occur even if there is no trend in actual divorce 
behaviors if there are trends in either the numerator or denominator of marriages per 
capita. These issues do not arise in hazard analyses that condition on marriage, hence 
restricting attention to those who are actually at risk of divorce.

We now turn to a stylized reexamination of findings on unilateral and no-fault 
divorce. Estimation of the proportional hazard DD places far greater demands on 
data than the linear probability DD, with the proportional hazard DD requiring not 
only marital histories but also residential histories allowing one to track changes in 
the state in which a married couple resides. The Panel Study of Income Dynamics is 
one possibility, but Friedberg (1998:610) noted that the number of married couples is 
not large enough to provide sufficient statistical power to obtain reasonably precise 
estimates, with Friedberg’s assertion also consistent with the Monte Carlo simulation 
results reported in Table 1. We instead analyze data from the marital supplement to 
the June 1980, 1985, 1990, and 1995 Current Population Surveys (CPS), which pro
vide large samples when pooled.

Our use of the term “stylized” is intended to flag the fact that the CPS lacks a resi­
dential history, providing only the state of residence at the time of CPS survey. These 
data limitations thus prevent us from a full analysis contrasting estimates from the 
linear probability and proportional hazard DD. In the analyses that follow, we instead 
present stylized results for the textbook two-group, two-period case. These analy
ses combine empirical estimates of the baseline risk of divorce obtained from the 
June CPS with posited values of the regression coefficients in the proportional hazard  
DD, with the posited values chosen to be consistent with those reported by Friedberg 
and Wolfers.

The retrospective marital histories in the CPS were obtained from married females 
aged 15 or older and never-married females aged 18 or older. Respondents were 
asked about the number of marriages, which was then followed by data on the first 
two and most recent marriage. The resulting marital histories thus provide the cal
endar year and month when a marriage began and, if a marriage ended, the dates 
of widowhood, separation, or divorce. In the June 1995 supplement, marital histo
ries were obtained for the first three and most recent marriages. The pooled CPS 
sample contains 201,033 female respondents, which we then restricted by drop
ping never-married females (n = 45,881) and a small number of cases with missing 
data (n = 2,477), yielding an analytic sample of 152,675 ever-married females. We 
then used these data to construct marital histories providing data on the duration of  
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marriage to the nearest month at divorce. We censored marriages at CPS survey, 
widowhood, or separation if the respondent reported a separation but no subse
quent divorce. The resulting data contain 185,047 marriages and 47,655 divorces 
(183,781.6 and 47,760.6, respectively, when weighted). The data cover the period 
both before and after the adoption of unilateral and no-fault divorce by states, with 
marriage cohorts that began marriages as early as 1928 and as late as 1995.

Figure 5 reports nonparametric estimates showing how divorce risks (upper panel) 
and survivor probabilities (lower panel) vary with marital duration. Estimates of divorce 
risks were obtained using a procedure described in Wu (1989); estimates of survivor 
probabilities were obtained using the Kaplan–Meier estimator (Kaplan and Meier 1958). 
Divorce risks increase rapidly at early marital durations then decline at later marital dura
tions. Divorce risks peak at around 4.5 years of marriage at a level of roughly 25 divorces 
per 1,000 marriages per year. Survivor probabilities decline monotonically with marital 
duration, with roughly four in 10 divorces occurring in these marriage cohorts.

We now turn to our stylized two-group, two-period example, in which we suppose 
that a researcher reports findings from the linear probability DD when divorce is in 
fact generated by the proportional hazard process in Eq. (3). As noted, the resulting 
analysis is stylized, in which we (1) use the CPS data to obtain empirical estimates of 
r0(u), the baseline risk of divorce, but (2) posit hypothesized values for the regression 
coefficients b1, b2, and ddhz in the proportional hazard DD in Eq. (3).
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Fig. 5  Divorce risk (upper panel) and survivor probability (lower panel) by marital duration among U.S. 
women. Source: June 1980, 1985, 1990, and 1995 Current Population Survey.
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To estimate r0(u), we used a highly flexible piecewise splined Gompertz speci­
fication with knots at 18, 24, 48, 72, 96, 120, and 180 months of marital duration, 
thus yielding a piecewise linear spline for log r0(u). We then posited the following: 
(1) that b1 = 0.1, consistent with group differences in which higher levels of divorce 
were observed in states that initially adopted unilateral and no-fault divorce; (2) that 
b2 = 0.1, consistent with the increasing trend in divorce during this period; (3) that  
pretreatment observation begins at 5 years (60 months) of marital duration; and  
(4) that treatment occurs at 10 years (120 months) of marital duration.

Figure 6 depicts how ddlp(hz ) evolves with time since treatment when the data are 
generated by the proportional hazard process in Eq. (3). The rising then declining val
ues of ddlp(hz ) require only that b1 > 0 and b2 > 0  and are otherwise robust to the values 
specified in (1)–(4). (These results are available upon request.) As expected, time-
invariant values of ddhz imply estimates of ddlp(hz ) that vary with time since treatment, 
first rising then declining with time since treatment. For ddhz = 0.0, we see that ddlp(hz ) 
takes values that are small in magnitude, with ddlp(hz ) negative initially, then positive, 
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Fig. 6  Behavior of ddlp(hz ) with time since treatment. The stylized example assumes b1 = b2 = 0.10 in Eq. (3) 
and pre- and posttreatment observation periods equal to [60, 120] and [120, 480], respectively. Empirical 
estimates of baseline divorce risks were obtained from retrospective marital histories reported by female 
respondents in the June 1980, 1985, 1990, and 1995 Current Population Survey.
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and then negative with time since treatment. This inverted U-shape pattern becomes 
more pronounced as ddhz takes larger positive values, thus potentially tempting those 
employing Eq. (1) to interpret the resulting patterns as increasingly credible evidence 
of dynamic response to treatment such as “pent-up” demand (Wolfers 2006:1806). 
These results thus suggest that for plausible values of group difference (b1 = 0.1) and 
trends in divorce (b2 = 0.1), time-invariant values of the proportional hazard DD coef
ficient ddhz will generate values of ddlp(hz ) that yield the qualitative pattern of results 
reported by Wolfers (2006).

Note that the curves for ddlp(hz ) take the same negative value at τ, the time at start 
of treatment, even when ddhz  takes different values. This follows from b1 > 0, which 
dictates that the pretreatment probability of divorce is higher for g = 1 than for g = 0,  
thus yielding a common negative intercept p(g = 0, t = τ)− p(g = 1, t = τ). Larger 
positive values of b1 or wider pretreatment intervals will increase the absolute magni
tude of this negative intercept.

A standard “frailty” hypothesis is that some married couples will be more 
divorce-prone than others, a possibility also suggested by the nonparametric survi
vor probabilities in Figure 5. Heterogeneity in “divorce proneness” would, in turn, 
imply a changing composition in a marriage cohort as divorces occur to the more 
divorce-prone, leaving a surviving stock of marriages that will be increasingly less 
divorce-prone. For the linear probability DD, this poses a threat to the credibility of 
causal claims because compositional change will act as an unobserved time-varying 
confound. Note, however, that if the goal is to obtain a credibly causal estimate of 
treatment on the treated, a potential confound that varies with marital duration can be 
treated in a hazard setting as a nuisance function in the sense of Cox (1972).

Discussion

For those wishing to use a difference-in-differences design to analyze a binary out
come, we argue that what this study implies is straightforward. If the binary out
come is best viewed as something akin to a biased coin flip, then a linear probability 
DD may well be appropriate. But if the binary outcome is best viewed as a single- 
decrement, continuous-time process involving the transition from one discrete state 
to another, then the linear probability DD should be avoided and a hazard DD used 
instead. For some, this conclusion and our formal results may be seen as the unsur
prising consequence of model misspecification. Still, that a binary outcome gener­
ated by a hazard process differs fundamentally from a biased coin flip—something 
long understood in the field of demography—is perhaps less well recognized, at least 
by some in other disciplines. But perhaps most importantly, our results emphasize 
that for a binary outcome, yet another necessary aspect of causal identification are 
assumptions, often implicit, about how the data are generated.

We have restricted attention to the textbook case of two groups and two periods, 
but different states adopted unilateral and no-fault divorce in different years, thus 
requiring DD procedures that generalize to multiple groups and multiple pre- and 
posttreatment periods. For such real-world data, standard practice has been to spec
ify state and calendar year fixed effects, and the analogous proportional hazard DD 
would be to add a third set of fixed effects for marriage cohort. However, important 
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recent developments show that the resulting DD regression coefficient will not in 
general give the desired causal estimate for the average effect of treatment on the 
treated, which instead can be shown to be equal to a weighted average of all pos
sible two-group, two-period DDs (Callaway and Sant’Anna 2021; de Chaisemartin 
and D’Haultfœuille 2022; Goodman-Bacon 2021). Although these results can be 
seen as redirecting attention back to the core role played by the textbook two-group, 
two-period DD considered in this study, an unanswered question for future research is 
whether a similar result holds for the proportional hazard DD when there are multiple 
groups and periods.

The popularity of DD procedures stems in no small part from the wide range of 
data that can be used, including not only panel data following individuals or units 
over time but also repeated cross sections for outcomes observed at the aggregate 
level for geographic units such as states or counties. Thus in the case of unilateral 
and no-fault divorce, economic studies to date have used a linear probability DD to 
analyze panel data on divorces measured at the state level. By contrast, the hazard 
DD makes far greater data demands, requiring individual-level data containing mar
riage histories on when a marriage began and the date of divorce if divorce occurred, 
but also a residential history in the state in which a married couple resided during the 
course of their marriage.

To date, there have been notable points of disagreement in economic studies of 
unilateral and no-fault divorce, including (1) whether effects are positive and per
sistent (Friedberg 1998), (2) whether effects are positive but subject to dynamic 
response (Iyavarakul et  al. 2011; Wolfers 2006), or (3) whether estimates are too 
fragile to warrant any firm conclusion (Lee and Solon 2011). But these studies share a 
common albeit implicit assumption—that biased coin flips generate both the outcome 
and effect of treatment. We contribute to these debates by showing that the rising then 
declining effect of unilateral and no-fault divorce noted by Wolfers (2006) can be 
generated by a time-invariant difference-in-differences coefficient in a proportional 
hazard setting. Thus, like Lee and Solon (2011), we conclude that the true impact of 
unilateral and no-fault divorce laws remains unclear, but we reach this conclusion on 
fundamentally different grounds. ■
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