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A Bayesian Cohort Component Projection Model to Estimate 
Women of Reproductive Age at the Subnational Level  
in Data-Sparse Settings
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ABSTRACT  Accurate estimates of subnational populations are important for policy for­
mulation and monitoring population health indicators. For example, estimates of the 
number of women of reproductive age are important to understand the population at risk 
of maternal mortality and unmet need for contraception. However, in many low-income 
countries, data on population counts and components of population change are limited, 
and so subnational levels and trends are unclear. We present a Bayesian constrained 
cohort component model for the estimation and projection of subnational populations. 
The model builds on a cohort component projection framework, incorporates census 
data and estimates from the United Nation’s World Population Prospects, and uses 
characteristic mortality schedules to obtain estimates of population counts and the com­
ponents of population change, including internal migration. The data required as inputs 
to the model are minimal and available across a wide range of countries, including 
most low-income countries. The model is applied to estimate and project populations 
by county in Kenya for 1979–2019 and is validated against the 2019 Kenyan census.

KEYWORDS  Population projection  •  Bayesian methods  •  Subnational  •  Cohort 
component models  •  Women of reproductive age

Introduction

Reliable estimates of demographic and health indicators at the subnational level are 
essential for monitoring trends and inequalities over time. As part of monitoring 
progress toward global health targets such as the Sustainable Development Goals 
(SDGs), there has been increasing recognition of the substantial differences that can 
occur across regions within a country (He et al. 2017; Lim et al. 2016; World Health 
Organization 2016). The analysis of national-level trends is often inadequate, and 
subnational patterns should be considered to fully understand likely future trajecto­
ries. Indeed, estimates and projections of important indicators such as child mortality 
and contraceptive use are now being published at the subnational level (New et al. 
2017; Wakefield et al. 2019).
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To effectively measure health indicators of interest, we need to be able to accurately 
estimate the size of the population at risk. In order to convert the rate of incidence 
of a particular demographic or health outcome to the number of people affected by 
that outcome, we need a good estimate of the denominator of those rates. Hence 
population counts are essential knowledge for policy planning and resource alloca­
tion purposes. However, even something as seemingly simple as the number of peo­
ple in an area of a certain age is relatively unknown in many countries, particularly 
low-income countries that do not have well-functioning vital registration systems. 
And as previously reported outcomes have shown, differences in estimates of the 
population at risk can have a large effect on the resulting estimates of key indicators. 
For example, in 2017 the United Nations Inter-agency Group for Child Mortality 
Estimation (UN-IGME) and the Institute for Health Metrics and Evaluation (IHME) 
both published estimates of under-five child mortality in countries worldwide (UN-
IGME 2017; Wang et al. 2017). However, estimates for 2016 differed markedly, with 
IHME’s estimate being 642,000 deaths lower than the UN-IGME estimate. The main 
reason for the discrepancy was the different sets of estimates of live births: IHME 
assumed there were 128.8 million live births in 2016, which was 12.2 million lower 
than the 141 million used by UN-IGME.

Data on population counts by age and sex at the subnational level vary substan­
tially by country, and often data availability and quality are the worst in countries 
where outcomes are also relatively poor. For example, many low-income countries 
may have only one or two historical censuses available, and very little data available 
on internal migration or mortality rates at the subnational level. This situation is in 
stark contrast to many high-income countries, where multiple data sources on pop­
ulation counts, mortality, and migration may exist. These varying data availability 
contexts present challenges in estimates of both population and the components of 
population change. In data-rich contexts, the challenge is to reconcile multiple data 
sources that may be measuring the same outcome. In data-sparse contexts, the chal­
lenge is to obtain reasonable estimates without many observations. In both cases, 
traditional demographic models are often utilized, which often center around a cohort 
component projection framework and take advantage of the fact that patterns in popu­
lations often exhibit strong regularities across age and time. However, these classical 
methods do not give any indication of uncertainty around the estimates or projec­
tions, and incorporating information from different data sources often requires ad 
hoc adjustments to ensure consistency. To overcome these limitations, we propose a 
method that builds on classical demographic estimation of subnational populations 
by incorporating these techniques within a probabilistic framework.

In particular, we present a Bayesian constrained cohort component model to esti­
mate subnational populations, focusing on women of reproductive age (WRA)—
that is, women aged 15–49. This subgroup forms the population at risk for many 
important health indicators, such as fertility rates, maternal mortality, and measures 
of contraceptive prevalence. The model presented embeds a cohort component pro­
jection setup in a Bayesian framework, allowing uncertainty in data and population 
processes to be taken into account. At a minimum, the model uses data on popula­
tion and migration counts from censuses, as well as national-level information on 
mortality and population trends, taken from the United Nations World Population 
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Prospects (United Nations 2019a). Because data requirements are relatively modest,  
the methodology is applicable across a wide range of countries and overcomes  
limitations of previous subnational cohort component methods, which require rel­
atively large amounts of data. Estimates and projections of population by age are 
produced, as well as estimates of subnational mortality schedules and in- and out-
migration flows. Hence, results from the model are helpful in understanding popu
lations at risk of demographic and health outcomes at the subnational level, but also 
in understanding the drivers of population change and how these may in turn affect 
trends in indicators of interest.

The following section gives a brief overview of existing methods of subnational 
population estimation and outlines the contributions of the model proposed here. We 
then describe the main data sources typically available for subnational population 
estimation in low-income countries, using counties in Kenya as an example, followed 
by a detailed description of the proposed methodology. Next, we present results of 
fitting the model to data in Kenya and validate its out-of-sample projections against 
the 2019 census. Finally, possible extensions are discussed.

Existing Methods of Subnational Population Estimation

Methods to estimate population at the subnational level are similar to estimation 
methods at the national level. However, there are several notable challenges of subna­
tional population estimation that do not exist at a country level. First, migration flows 
are more important at the subnational level. While migration flows are often assumed 
to be negligible at the national level, they are usually larger as a proportion of total 
population size at the regional level. In addition, migration flows at the subnational 
level are also often more difficult to estimate. Any particular region could have net in- 
or out-migration, and flows to and from different regions can differ markedly in mag
nitude. In some contexts, international migration can also be an important component 
of demographic change, particularly in regions of armed conflict. Second, when esti
mating subnational populations, it is important to ensure that the sum of all regions 
agrees with national estimates produced elsewhere. In practice, this usually involves 
a process of calibration against a known national population so that they match the 
total. Lastly, data quality and availability are often poorer at the subnational level. 
Populations at the regional level are smaller and data are often more volatile, and data 
on key indicators of mortality and internal migration are often lacking or unreliable. 
This means that it is particularly important at the subnational level to address and 
quantify uncertainty in population counts and components of change.

Traditional Methods

Perhaps the simplest and least data-intensive methods of subnational population 
estimation involve interpolation and extrapolation of regional shares of the total pop­
ulation (Swanson and Tayman 2012). Given two (or more) censuses, one can cal­
culate the relevant shares of the population by age, sex, and region and see how 
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they have changed over time. Intercensal estimations of populations assume constant 
increase (or decrease) over time. Projection of populations into the future can then be 
made on the basis of assumptions of constant levels or trends in shares. For example, 
the U.S. Census Bureau produces subnational population estimates for the majority 
of countries worldwide (U.S. Census Bureau 2017). The methods used to produce 
such estimates involve making assumptions such as constant or logistic growth and 
iteratively calculating population proportions by age, sex, and region such that they 
match the country’s total population (Leddy 2016).

The most commonly used methods of population estimation and projection are 
cohort component methods. These center on the demographic accounting identity, 
which states that the population size (P) at time t is equal to the population size at t −1,  
plus births (B) and in-migrants (I), minus deaths (D) and out-migrants (O) (Wachter 
2014):

	 Pt = Pt−1 + Bt−1 + It−1 − Dt−1 −Ot−1. 	 (1)

This equation is for a total population, but the same accounting equation holds 
for each age-group separately (where births affect only the first age-group). The 
cohort component method of population projection (Leslie 1945) takes a baseline 
population with a certain age structure and projects it forward using age-specific 
mortality, fertility, and migration rates. Cohort component methods are important 
because they allow for overall population change to be related to the main com­
ponents of that change. By estimating population size on the basis of the compo­
nents of fertility, mortality, and migration, the method allows changes in these 
components to be taken into account. However, cohort component methods are 
more data-intensive than extrapolation methods, which is particularly an issue at 
the subnational level. Especially for developing countries, where well-functioning 
vital registration systems do not exist, sufficient data on mortality, fertility, and 
migration are often lacking.

Other methods of subnational estimation involve building regression models 
that relate other variables of interest to changes in population over time. For exam­
ple, one could regress the ratio of census populations (area of interest / total pop­
ulation) against the ratio of some other indicator, such as births, deaths, voters, or 
school enrollments (for a detailed review, see Swanson and Tayman 2012). How­
ever, given the lack of data available in many developing countries—on population 
counts, let alone other indicators of growth—these methods have limited use in our 
context.

These traditional methods of population estimation are deterministic and do not 
account for random variation in demographic processes and possible measurement 
errors that may exist in the data. In practice, the population data that are available in 
developing countries are often sparse and may suffer from various types of errors. 
When estimating and projecting population sizes through time, it is particularly 
important in developing country contexts to give some indication of the level of 
uncertainty around those estimates, based on stochastic error, measurement error, and 
uncertainties in the underlying modeling process.
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Bayesian Methods

The use of Bayesian methods in demography has become increasingly common, as it 
provides a useful framework to incorporate different data sources in the same model, 
account for various types of uncertainty, and allow for information exchange across 
time and space (Bijak and Bryant 2016). Bayesian methods have been used to model 
and forecast national populations (Raftery et al. 2014; Raftery et al. 2012; United 
Nations 2019a), fertility (Alkema et  al. 2011), mortality (Alexander and Alkema 
2018; Alkema and New 2014; Girosi and King 2008), and migration (Bijak 2008). In 
terms of estimating the full demographic accounting identity, Wheldon et al. (2013) 
proposed a method for the reconstruction of past populations. The model embeds the 
demographic accounting equation within a Bayesian hierarchical framework, using 
information from available censuses to reconstruct historical populations via a cohort 
component projection framework. The authors showed that the method works well 
to estimate populations and quantify uncertainty in a wide range of countries with 
varying data availability (Wheldon et al. 2016). The method presented in Wheldon 
et al. (2013) is designed for population reconstruction at the national level, and as 
such, accounting for internal migration is not an issue. In addition, their method relies 
on and calibrates to national population estimates produced as part of the UN World 
Population Prospects.

In the field of subnational estimation, Bayesian methods have also been used 
in many different contexts. For subnational mortality estimation, many research­
ers have used Bayesian hierarchical frameworks to share information about mor­
tality trends across space and time, in contexts where the available data are both 
reliable (Alexander et al. 2017; Congdon et al. 1997) and sparse (Schmertmann and  
Gonzaga 2018). For subnational fertility estimation, Sevcikova et al. (2018) proposed 
a Bayesian model that produces estimates and projections of subnational total fertility 
rates (TFRs) that are consistent with national estimates of TFR produced by the UN. 
Building from the local level up, Schmertmann et al. (2013) proposed a method that 
uses empirical Bayesian methods to smooth volatile fertility data at the regional level, 
before modeling using a Brass relational model variant.

In terms of population estimation at the subnational level, John Bryant and col­
leagues have shown how the demographic accounting equation can be placed within 
a Bayesian framework to account for and reconcile different data sources, popula­
tion counts, and the components of population change (Bryant and Graham 2013;  
Bryant and Zhang 2018). Bryant and Zhang (2018) showed how the underlying demo­
graphic processes can be captured through a process or system model, and different 
types of uncertainty around data inputs are captured through data models. The focus 
of Bryant and Graham (2013) was producing subnational population estimates for  
New Zealand—reconciling and incorporating information about the population from 
sources such as censuses and school and voting enrollments. The approach that we 
take in this article is similar to the Bryant et  al. approach, in that we model pop­
ulation change with a process model, the components of which are described by 
system models, and different sources of information are combined through the use of  
data models. However, whereas Bryant et al. tried to overcome challenges of com­
bining multiple data sources that may be measuring the same outcome, we are trying 

D
ow

nloaded from
 http://dup.silverchair.com

/dem
ography/article-pdf/59/5/1713/1646351/1713alexander.pdf by guest on 09 April 2024



1718 M. Alexander and L. Alkema

to overcome the challenges of estimating subnational populations in contexts where 
there are extremely limited amounts of data available.

There has been an increasing amount of research using geolocated data and  
satellite imagery to estimate population sizes and flows in developing countries 
(Leasure et  al. 2020; Wardrop et  al. 2018). Led by the WorldPop project at the  
University of Southampton (WorldPop 2018), researchers have used information 
from satellite imagery to identify areas of settlements and combined this information 
with census data to obtain highly granular population density estimates across Africa 
(Leasure et al. 2020; Linard et al. 2012). While this work contributes to information 
about subnational populations, the focus and goals of this estimation work are dif­
ferent from our goals in this study. In particular, the goal of much of the WorldPop 
work is primarily to obtain estimates of total population and population density at a 
very granular level, rather than to obtain population estimates by age and sex. The 
results have then been combined with data on age and sex distributions from cen­
suses (or more recent surveys) to map the distribution of populations by age and sex. 
More recently, WorldPop’s “bottom-up” approach starts with a census or survey for 
a particular country and uses spatial models to produce spatially granular estimates 
of populations by age and sex for a single year (Wardrop et al. 2018). However, less 
attention has been paid to how age distributions across regions change over time. 
But changes in age distributions are important in understanding broader population 
change and how this will impact global health indicators of interest. In addition, 
our approach is grounded in understanding the main components of demographic 
change—mortality and migration—over time and how they affect population sizes, 
rather than just estimating the population size as a single outcome.

The methodology proposed here incorporates a cohort component projection 
model into a Bayesian hierarchical framework to understand changes in population 
structures over time. It allows estimates to be driven by available data and for uncer­
tainty to be incorporated around estimates and projections. The approach has simi­
larities with methodologies described in Wheldon et al. (2013) (but with a focus on 
subnational estimation) and in Bryant and Graham (2013) and Bryant and Zhang 
(2018) (but with a focus on data-sparse situations).

In particular, we introduce a framework to estimate subnational population 
counts and components of population change that relies on a minimal amount of 
data that are available for the vast majority of countries worldwide. Observations 
on subnational population counts and internal migration movements are taken from 
censuses, but no information on subnational mortality patterns is required. We 
instead use a mortality model approach based on principal components derived 
from national mortality schedules. Using principal components for demographic 
modeling and forecasting first gained popularity after Lee and Carter used the tech
nique as a basis for forecasting U.S. mortality rates (Lee and Carter 1992). More 
recently, principal components has become increasingly used in demographic mod­
eling, in both fertility and mortality settings (Alexander et al. 2017; Clark 2016; 
Schmertmann et al. 2014).

While one strength of our approach is being able to estimate components of sub­
national population change with limited data, another strength of the proposed frame­
work is that it can be readily extended to include other data or estimates. For example, 
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gridded estimates produced as part of the WorldPop project could conceivably be 
treated as an additional data input to the model. Conversely, subnational population 
estimates and uncertainty bounds using our approach may be useful as inputs to help 
inform WorldPop’s estimates.

Data

We aim to estimate female population counts for ages 15–49 per five-year age-group 
for subnational areas that are the second administrative level down. This data descrip­
tion focuses on Kenya, for which the model is applied in later sections. However, the 
data and methods are more broadly applicable to other countries that have similar data 
available. Inputs used to obtain estimates come from two main sources: micro-level 
data from censuses, and national population and mortality estimates from the 2019 
World Population Prospects. These data sources are outlined in the following sections.

Overview of Kenyan Geography

In Kenya, the first administrative units are provinces, and the second admin
istrative units are counties. There are eight provinces, including the capital,  
Nairobi, and 47 counties. The county boundaries have changed over time but have 
been stable since the 2009 census. We aim to produce estimates of populations 
of women of reproductive age at the county level based on county boundaries in 
2009. Within the model, we also make use of harmonized district boundaries (see 
the following description), which are slightly larger than counties. There are a 
total of 35 districts.

Census Data

Data inputs on subnational population counts and internal migration flows come 
from national censuses. The census data are available through Integrated Public 
Use Microdata Series (IPUMS) International (Minnesota Population Center 2017). 
IPUMS International contains samples of microdata for 305 censuses from 85 dif­
ferent countries. The majority of countries of interest have relatively recent censuses 
available through IPUMS International. Kenya has decennial censuses available from 
1979 to 2009, and we use data from these years to fit the model in the Kenyan context. 
Micro-level data are not available for the 2019 Kenyan census, but population counts 
by sex and five-year age-group and county are available through the national statistics 
office. While we do not use the 2019 data in model fitting, it is used for model evalu
ation and validation, as detailed in the Model Evaluation section in Results.

In the micro-level IPUMS data, location of residence is reported at the first (prov
ince) and second (county) administrative levels, as well as at a harmonized district 
level. For Kenya, the provinces are stable over time, but before 2009 the county 
boundaries changed. Hence, we only have data at the county level for Kenya for 
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2009. However, we can make use of the harmonized districts for data in years prior 
to 2009. The districts represent slightly larger groups than the 47 Kenyan counties, 
which are harmonized and temporally stable (IPUMS 2018). In all cases, each 2009 
county is completely contained in one unique district.

We use census data to obtain information on two different quantities: observed 
population counts and observed patterns of in- and out-migration. Female population 
counts by five-year age-groups for ages 15–49 and subnational administrative region 
are obtained directly from the IPUMS International microdata. Because these data are 
samples (most commonly 10%), the microdata are multiplied by the person weights 
to obtain counts by age and area.1

Information on internal migration between counties and districts is also obtained 
from national censuses. This is based on questions about a migrant’s location of res­
idence one year ago. We calculated in- and out-migration counts by age-group, for 
each region and each census. For the 2009 census, the calculations were based on 
counties; for all earlier years, the calculations were based on districts.

National Estimates from World Population Prospects

The World Population Prospects (WPP) are the official population estimates and pro
jections produced by the United Nations. WPP is revised every two years, with the lat­
est revision being in 2019 (United Nations 2019a). WPP estimates are produced using a 
combination of census and survey data and demographic and statistical methods. Both 
population counts and mortality estimates from WPP are used in the model.

We use estimates from WPP 2019 in two ways. First, we would like to ensure that 
the sum of population estimates at the regional level agrees with published estima­
tes at the national level. Hence, the standard national population counts produced by 
WPP are used as a constraint in the model, subject to uncertainty. The WPP models 
populations of five-year age-groups every five years from 1950 to 2100.

In addition, national mortality estimates produced by WPP are used as the basis of 
a mortality model for patterns at the regional level, capturing HIV/AIDS-related pat­
terns of mortality. To generate these patterns, we use estimates from multiple coun­
tries in the sub-Saharan region. WPP uses the relationship between infant mortality 
and the probability of dying between ages 15 and 60, that is, 45q15, to estimate a life 
table based on Coale–Demeny model life tables (United Nations 2019b). We use esti­
mates of the probability of dying between ages x and x +5, or 5qx.

Other Potential Data Sources

We use census data and WPP estimates as inputs to the model. There are other avail­
able data sources that could be used as inputs. These sources and the reasons for not 
including them are discussed in online Appendix A.

1  The sampling error introduced by considering sampled microdata is accounted for in the data model; 
refer to Methods for details.
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Model

Overview

In this section, we describe the modeling framework to estimate female populations 
by five-year age-group and county. The model is outlined for the situation where, as 
in the Kenyan case, we do not observe county-level information for every census, 
but we have information on larger, harmonized districts that fully encapsulate the 
counties. This situation is common for many low-income countries, where geo­
graphic boundaries may vary over time but there exist other stably defined boundaries 
through the microdata on IPUMS.

There are many components and several types of data going into the model at 
different stages. The overall model framework is summarized visually in Figure 1. 
We define ηa,t ,c to be the underlying “true” population of women in age-group a,  
year t, and county c. Our main modeling goal is to obtain estimates and projections of 
these quantities. The population counts follow a cohort component projection (CCP) 
model, which assumes that population counts in the current time period are those 
from the previous period, after taking into account expected changes in mortality 
and migration. The CCP model also includes an additional age–time multiplier that 
captures any other variation not already captured by expected changes in mortality or 
migration. Our setup allows for changes in mortality and migration to be projected 
forward even if there are no data on these components, and is useful in data-sparse 
contexts where there is limited information available on the individual components of 
population change. Note that the goal is to estimate adult populations only and hence 
the model does not include a fertility component. More details on how estimates in 
the first age-group are derived are discussed in the following.

Fig. 1  Diagram showing the main components of the Bayesian cohort component projection model
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As illustrated in Figure 1, the mortality, the migration, and the additional age–time 
multipliers have additional “process models” (shown in the third row), and data on pop­
ulation counts and migration are related to the underlying process through data models 
(shown in the top row). The following sections broadly describe each component of 
the model. The full model specification and details can be found in online Appendix B.

Population Model

The model for population includes the cohort component project model; the data 
model, which relates observations of population counts from the census to the under­
lying quantities of interest; and the national-level constraint, which relates the sum of 
the county-level populations to WPP estimates.

Cohort Component Projection Model

The underlying population ηa,t ,c can be expressed as

	 ηa ,t ,c = ηa −1,t −1,c ⋅ 1− γ a −1,t −1,c( )( ) ⋅ 1+ φa −1,t −1,c( ) ⋅ εa −1,t −1,c( ), 	 (2)

where γ a,t ,c is the expected conditional probability of death in age-group a, year t, and 
county c; φa,t ,c  is expected net migration (i.e., in- minus out-migration) as a proportion 
of population size; and εa,t ,c  is an additional age–year–county multiplier. The multi­
plier allows for additional changes in age that may not have already been captured by 
the constrained mortality and migration components.

Note that this is a form of a cohort component projection framework. As men­
tioned previously, our main modeling goal is to obtain estimates of the ηa,t ,c, but we 
are also interested in estimates of expected mortality (γ a,t ,c) and expected migration 
(φa,t ,c), and, if nonzero, the log multipliers (log εa,t ,c).

Data Model

Define yi to be the ith observed population count. Depending on the year of the cen­
sus, yi is observed at either the county c level or district d  level. The data model is

	 log yi |ηa,t ,c ∼

N log ηa i⎡⎣ ⎤⎦,t i⎡⎣ ⎤⎦,c i⎡⎣ ⎤⎦
,sy2 i⎡⎣ ⎤⎦( )  if t[i] = 2009,

N log ηa[i],t[i],c[i]( )c  ∈ d[i]∑ ,sy2 i⎡⎣ ⎤⎦
⎛

⎝⎜
⎞

⎠⎟
 if t[i] < 2009,

⎧

⎨
⎪
⎪

⎩
⎪
⎪

 	 (3)

where sy2 is the sampling error based on the fact that the microdata in IPUMS are a 10% 
sample.2 The second case of this equation dictates that if we have observations prior to 
2009, we can relate these only to ηa,t ,cs that have been summed to the district level.

2  Sampling errors were calculated assuming a binomial distribution and using the delta method.
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Constraints on National Population

We would like to ensure that the county-level populations ηa,t ,c imply a national- 
level population that is consistent with previously published estimates in WPP. We 
would like to use WPP estimates; however, these do not have associated uncertainty 
published, so we assume the following. We constrain the sum of the county popula­
tions by age and year to be within the interval Λa,t ,Ωa,t( ):
	 Λa,t < ηa,t ,cc∑ ≤ Ωa,t ,	 (4)

with lower bound Λa,t and upper bound Ωa,t  determined by the national estimates pro­
duced by WPP. Specifically, for the lower bound Λa,t , we assume the following prior:

	 log Λa, t ∼ N log 0.9 WPPa, t , 0.12( )T ,log WPPa, t( ). 	 (5)

This prior dictates that the prior probability of ηa,t ,cc∑ < 0.9 WPPa,t  is 50%. The 
standard deviation of 0.1 on the log scale captures the uncertainty associated with 
the lower bound. We assign a WPP-informed prior to upper bound Ωa,t  in a similar 
manner:

	 log Ωa, t ∼ N log 1.1 WPPa, t , 0.12( )T log WPPa, t , ( ) . 	 (6)

Note that in this setup, we do not use WPP estimates as “data” to directly inform 
the sum of the county estimates as in other work (e.g., WorldPop estimates). Instead, 
we use the WPP estimates to exclude combinations that are extreme as compared to 
the WPP estimates.

Priors on First Year and Age-group

Because we are interested in estimating and projecting adult populations, the cohort 
component projection framework does not explicitly take fertility into account. How­
ever, the projection framework still requires an initial population of 15-year-olds 
from which to project populations forward. Additionally, the model requires initial 
populations in the first year of reconstruction. We place priors on the size of these ini
tial populations using information about the national populations from WPP and the 
county population proportions from the censuses.

In particular, we use the following priors:

	 log η1,t ,c ∼ N log WPP1,t + log prop1,t ,c , 0.012( ), 	 (7)

	 log ηa,1,c ∼ N log WPPa,1 + log propa,1,c , 0.012( ), 	 (8)

where WPPa,t is the national-level population count from WPP in the relevant age-group 
and year, and propa,t ,c is the proportion of the total population in the relevant age-group, 
year, and county, which was calculated by interpolating census-year proportions and 
assuming the proportion of a district’s population in each county was constant at a level 
equal to 2009.
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Mortality Model

Equation (2) requires estimates of the expected conditional probability of death in 
each age-group, year, and county. As discussed in the Data section and the online 
appendix, we do not have reliable information about mortality by age at the county 
level, and hence we use information about mortality trends at the national level as 
the basis for a mortality model at the subnational level. A semiparametric model is 
used to capture the shape of national mortality through age and time, while allow­
ing for differences by county. In particular, we model county mortality on the logit 
scale as

	 logit γ a ,t ,c( ) = Ya ,0 +βt ,c ,1 ⋅Ya ,1 +βt ,c ,2 ⋅Ya ,2 , 	 (9)

where Ya,0 is the mean age-specific logit mortality schedule of the national mortality 
curves and Y1:A,1 and Y1:A,2 are the first two principal components derived from national- 
level mortality schedules. Modeling on the logit scale ensures that the death probabil­
ities are between zero and one.

The county-specific coefficients βt ,c,k are modeled as fluctuations around a national 
mean:

	 βt ,c ,k = Bt ,knat + δt ,c ,k , 	 (10)

	 δt ,c,k |δt  −  1,c,k ,σδ
2 ∼ N δt  −  1,c,k ,σδ

2( ), 	 (11)

where Bt ,knat are the national coefficients on principal components, derived from WPP 
data. The county-specific fluctuations are modeled as a random walk.

Principal components create an underlying structure of the model in which reg­
ularities in age patterns of human mortality can be expressed. Many different kinds 
of shapes of mortality curves can be expressed as a combination of the components. 
Incorporating more than one principal component allows for greater flexibility in the 
underlying shape of the mortality age schedule.

Principal components were obtained from a decomposition of a matrix that con­
tains a set of standard mortality curves. We used national life tables published in the 
World Population Prospects 2019 for a set of 26 countries in sub-Saharan Africa.3  
These countries were chosen because, like Kenya, they experienced substantial 
increases in mortality owing to HIV/AIDS.

In particular, let X be a N ×G matrix of logit mortality rates, where N  is the 
number of years and G is the number of age-groups. In this case, we had N = 16 
years (estimates every five years from 1950 to 2025) of G = 7 age-groups (15–19, 
20–24, . . . , 45–49). The singular value decomposition (SVD) of X is

	 X = UD ′V , 	 (12)

where U is a N × N  matrix, D is a N ×G matrix, and V is a G ×G matrix. The first 
two columns of V (the first two right-singular values of X) are Y1:A,1 and Y1:A,2.

3  Benin, Burkina Faso, Burundi, Cameroon, Central African Republic, Chad, Comoros, Democratic Republic 
of the Congo, Ethiopia, Ghana, Guinea, Guinea-Bissau, Kenya, Madagascar, Mali, Mauritania, Niger, Nigeria, 
Senegal, Sierra Leone, South Africa, Togo, Uganda, United Republic of Tanzania, Zambia, and Zimbabwe.
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The mean mortality schedule and the first two principal components for Kenyan 
national mortality curves between ages 15–49 from 1950 to 2020 are shown in Figure 2. 
The mean logit mortality schedule shows a standard age-specific mortality curve, with 
mortality increasing over age. The first two principal components have demographic 
interpretations. The first shows the average contribution of each age to mortality improve
ment over time. This interpretation is similar to the bx term in a Lee–Carter model (Lee 
and Carter 1992). For the case of Kenya, the second principal component most likely 
represents the relative effect of HIV/AIDS mortality by age (Sharrow et al. 2014).

Migration Model

The second population change component of Eq. (2) refers to the net-migration rate in 
a particular age-group, year, and county. Specifically, define the net-migration rate as

	 φa,t ,c =
ψ a,t ,c
in − ψ a,t ,c

out

ηa−1,t−1,c
, 	 (13)

where ψ a,t ,c
in  is the number of in-migrants and ψ a,t ,c

out  is the number of out-migrants.
For the migration component, we use observed data from the census. In a similar 

way to the population model, we have a process model, which defines the underlying 
migration process for the “true” migrant parameters, and a data model, which relates 
observations from the census to the underlying truth.

Process Model

The model form for the number of in-migrants and out-migrants is informed by patterns 
observed in the raw census data. In particular, looking at the age distribution of both in- 
and out-migration (i.e., the proportion of total migrants who are in age-group a) suggests 
that, while the overall magnitude of migration changes over time, the age patterns in 
migration are fairly constant (see figures in online Appendix C). This observation is con
sistent with the large body of migration estimation literature, where strong age patterns 
of migration motivate both parametric and semiparametric models (e.g., Rogers 1988; 
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Fig. 2  Mean logit mortality schedule and first two principal components
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Rogers and Castro 1981; Wisniowski et al. 2015). This observation allows us to simplify 
the expression for the number of in-migrants and out-migrants, which are modeled as

	 ψ a,t ,c
in = Ψt ,c

in ⋅Πa,c
in , 	 (14)

	 ψ a,t ,c
out = Ψt ,c

out ⋅Πa,c
out , 	 (15)

where Ψt ,c
in  and Ψt ,c

out are the total number of in- and out-migrants, respectively, and 
Πa,c
in  and Πa,c

out are the relevant age distributions. In this way, the age distributions are 
assumed to be constant over time while the total counts vary.

The total number of in-migrants and out-migrants are estimated for each county– 
period. We model the total counts as a second-order random walk to impose a certain 
level of smoothness in the counts over time. As the model captures internal migration 
flows in and out of each county, it must be the case that the sum of all in-migration 
flows minus the sum of all out-migration flows equals international net-migration. 
Lacking sufficient reliable information on international migration for Kenya, we con
strain the absolute difference between the sum of all estimated in- and out-migration 
flows to be less than 10% of the total population for that age-group and period. See 
online Appendix B for further details.

Data Model

Finally, we relate the observed age-specific in- and out-migration counts in the cen­
suses, denoted Mi

in and Mi
out , respectively, to the underlying true counts ψ a,t ,c

in  and 
ψ a,t ,c
out  through the following data model:

	 logMi
in |ψ a,t ,c

in ∼
N logψ a[i],t[i],c[i]

in ,sin2 [i]( )  if t[i] = 2009,

N log ψ a[i],t[i],c[i]
in( ),sin2 [i]c∈d[i]∑( )  if t[i] < 2009,

⎧
⎨
⎪

⎩⎪
	 (16)

	 logMi
out |ψ a,t ,c

out  ∼
N logψ a[i],t[i],c[i]

out ,sout2 [i]( )  if t[i] = 2009,

N log ψ a[i],t[i],c[i]
out  ( ),sout2 [i]c∈d[i]∑( )  if t[i] < 2009.

⎧
⎨
⎪

⎩⎪
	 (17)

In a fashion similar to the data model for population, data observed prior to 2009 
can only be related to the migration counts that have been summed to the district 
level. In addition, the sin2  and sout2  are the sampling errors based on the fact that the 
microdata in IPUMS are a 10% sample.

Additional Age–Time Multiplier εa,t ,c

In the models for expected mortality and migration discussed in the foregoing, con­
straints are imposed on the age-specific effects. In particular, the use of the SVD approach 
to model mortality results in mortality age patterns that are linear combinations of the 
mean schedule and the components of change (the Y ’s). Additionally, the migration 
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model assumes a constant age pattern of migration over time with varying magnitudes 
of in- and out-migration. We assume these forms in order to greatly reduce the number 
of parameters that need to be estimated in each model, such that reasonable estimates of 
mortality and migration rates can still be obtained in data-sparse settings.

To allow for county-specific age and time variation that may not have already been 
captured by other components, we introduced an additional age–time multiplier εa,t ,c in 
the population cohort component model (see Eq. (2)). We model these multipliers on 
the log scale, and to ensure identifiability we assume that the mean of the sum of the log 
multipliers over all age-groups is zero. See online Appendix B for more details.

This setup assumes that in general, patterns of population change are well captured 
by the mortality and migration components, and hence, in the absence of more infor­
mation, we expect the multiplier terms to be close to zero. Observing many estimated 
nonzero multiplier terms may suggest that the mortality and migration components 
need to be reformulated.

Computation

The model was fitted in a Bayesian framework using the statistical software R. 
Samples were taken from the posterior distributions of the parameters via a Markov 
Chain Monte Carlo (MCMC) algorithm. This was performed using JAGS software  
(Plummer 2003). Standard diagnostic checks using trace plots and the R̂ diagnostic 
(Gelman et al. 2020) were used to check convergence.

Best estimates of all parameters of interest were taken to be the median of the 
relevant posterior samples. The 95% Bayesian credible intervals were calculated by 
finding the 2.5% and 97.5% quantiles of the posterior samples.

Data and code are available at https:​/​/github​.com​/MJAlexander​/subnational​- 
bayes​-ccp.

Results

We illustrate some key results of population counts, mortality, and migration. Addi­
tional results are presented in online Appendix E.

Population Estimates and Projections

Population estimates and projections are shown in Figure 3. Part a shows the pop­
ulation of women of reproductive age by province in 1979–2019. The black lines 
and associated shaded area represent the model estimates and associated 95% cred­
ible intervals, respectively. The red dots indicate decennial censuses. Populations of 
WRA increase in every province, with the largest province being Rift Valley. While 
Northeastern is the smallest province by population size, the growth rate is rela­
tively rapid, likely owing to the relatively high fertility rates in this province (Kenya 
National Bureau of Statistics 2015; Westoff and Cross 2006), whereas rapid popula­
tion increases in Nairobi are driven by in-migration.
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Part b of Figure 3 illustrates populations over age and time for three counties. Note 
the different y-axis scales for each county. For Nairobi, populations are much larger 
and the presence of net in-migration far surpasses the effects of mortality, leading 
to an inverted U-shaped age distribution. For Wajir, a relatively rural county in the 
northeast, population growth seems rapid over time. For Baringo, populations are 
relatively small and decline regularly over age owing to mortality.

Mortality

In addition to getting estimates of population counts, we also obtain estimates of the 
components of population change, namely, mortality and migration. Regarding mor­
tality, there is evidence of variation across the counties. Focusing on three counties 
as above, mortality profiles are quite different, with Nairobi’s estimates being higher 
than those of the other two counties shown (Figure 4).
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b. Estimates of WRA by county

Fig. 3  Population estimates and projections of women aged 15–49 by province and for three counties, by 
age and year, Kenya, 1979–2019
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Fig. 4  Estimates of mortality by age and year for three counties

Migration

In addition to mortality, there is substantial variation in patterns in migration 
across Kenyan counties. Figure 5 shows estimates of all migration components in 
the three case study counties. For total in-migration and out-migration estimates  
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Fig. 5  Estimates of migration components by year and age for three counties
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(part a), flows into and out of Nairobi are much larger, with net in-migration  
reaching over 200,000 people per year. Flows into Wajir are much smaller (<10,000 
people), and in 2019 Baringo had net out-migration of around 10,000. The estimated 
age patterns of migration for the three counties are also shown in part b. Some differ­
ences exist, with Nairobi’s immigrants much more concentrated around ages 20–24.

Age–Time Multiplier

Figure 6 shows the age–time multipliers ε for the three example counties. For  
Baringo, the multipliers are essentially always zero on the log scale. This observation 
is true for the majority of counties (see online Appendix E for plots for additional 
counties), which suggests that most of the patterns over age and time are captured 
well by the mortality and migration components. For county–years for which multi­
pliers do deviate from zero, estimates are at most around 10% of the total population 
magnitude, and usually between 0% and 5%. For example, for Nairobi, the estimated 
multiplier suggests that, after accounting for the expected mortality and migration 
components, in 2009, we see an additional increase around age 20 (of around 10%) 
and an additional decrease of almost 10% for the oldest age-group.

Model Evaluation

A national census was conducted in Kenya in 2019. While the micro-level data are 
not yet publicly available (e.g., via IPUMS), the resulting population counts by age, 
sex, and county have been published by the Kenya National Bureau of Statistics 
(Kenya National Bureau of Statistics 2019). We can therefore evaluate the 2019 pro­
jections from our model with the actual counts from the 2019 census.

We extracted census population counts by age, sex, and county from a PDF file 
containing the results following code provided by Alexander (2022). We compared 
the 2019 projections from the Bayesian cohort component projection model (referred 
to as Bayes CCP) with these counts and calculated several summary metrics. We 
define the relative error eg  for a particular group g as
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Fig. 6  Estimates of specific age–time multipliers for three counties
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	 eg =
yg ,2019  −  η̂g ,2019

yg ,2019
, 	 (18)

where yg ,2019 refers to the census-based population count for that population and η̂g ,2019 
to the model-based projection. A group g  can refer to an age–county or age–district 
group, for example.

On the basis of the errors, we calculated mean, median, and root-mean-squared 
errors (RMSEs) by age-group and for the total population. We compared these results 
to the results of a similar linear extrapolation model, where the population in 2019 
was estimated by applying the same proportion change seen between the 1999–2009 
censuses. Errors were summarized over districts, as estimates by county are not pos­
sible with the linear extrapolation method (as we have only one previous set of census 
observations by county).

Error summaries by age-group and for the total population are shown in Table 1. 
In general, the Bayesian model projections are within ∼1% of the census populations. 
The magnitudes of the RMSEs for the simple linear interpolation are 3–4 times as 
high as those of the Bayes CCP. The bias results suggest that the point estimate from 
the Bayes CCP is often slightly lower than the census observation, whereas linear 
interpolation substantially overestimates population counts.

We also calculated the coverage of the 95% prediction intervals of the Bayesian 
CCP model estimates for 2019, compared to the observed 2019 census counts, and 
the proportion of census counts above and below the prediction intervals. If the model 
is well calibrated, on average around 90% of the observed census counts should fall 
within the 90% prediction intervals, and 5% of observations should fall above and 
below the interval. Table 2 reports coverage by age-group and suggests that in general 
the coverage of the credible intervals matches expectations. However, in some age-
groups, there is a relative bias toward observations falling below the interval rather 
than above.

We also calculated the probability integral transform (Angus 1994) to assess the 
consistency between the 2019 projections and observed counts. Results are presented 
in online Appendix F.

Table 1  Summary of errors in district population sizes by age-group comparing 2019 census counts with 
two methods, linear interpolation and the Bayesian cohort component projection model (Bayes CPP)

Mean Error Median Error RMSE

Age-group Interpolation Bayes CCP Interpolation Bayes CCP Interpolation Bayes CCP

15–19 –0.070 –0.058 0.128 0.010 0.013 0.005
20–24 –0.228 –0.081 –0.040 –0.033 0.016 0.005
25–29 –0.266 –0.019 0.018 0.006 0.020 0.005
30–34 –0.146 0.043 0.035 0.047 0.020 0.005
35–39 –0.254 –0.161 –0.008 –0.179 0.035 0.012
40–44 –0.058 –0.074 0.185 –0.048 0.038 0.009
45–49 –0.246 –0.065 0.049 0.011 0.061 0.021
Total Population –0.101 –0.045 0.119 0.011 0.031 0.010
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Discussion

In this article, we proposed a Bayesian cohort component projection framework for 
estimating the population of women of reproductive age when limited amounts of 
data are available. The model uses information on population and migration counts 
from censuses, as well as mortality patterns from national schedules, to reconstruct 
populations from cohorts moving through time. The modeling framework also nat­
urally extends to allow the projection of populations. In addition, the model ensures 
that the national populations implied by the sum of subnational areas agree with 
national prepublished UN WPP estimates.

The model was used to estimate and project populations of women of reproduc­
tive age for counties in Kenya over the period 1979–2019. Results suggested contin­
ued growth of WRA populations in all districts, and accelerated growth in particular 
in areas such as Nairobi and Northeastern. The mortality component of the mod­
eling framework highlighted the stagnating progress of longevity seen through the 
1990s and 2000s, largely due to HIV/AIDS, but also indicated more recent mortality 
declines. The estimates from the Kenyan example also highlighted substantial differ­
ences in internal migration patterns across the nation.

The model requires inputs only from national censuses and WPP estimates, 
which are available for the majority of countries. Thus, while the model was tested 
on estimation in Kenya, the methodology is applicable to a wide range of countries 
with very little alteration. For example, there are currently census microdata avail­
able for almost 100 counties on the IPUMS International website. At a minimum, 
in addition to WPP estimates, data on population counts and in- and out-migration  
flows by subnational area are ideally required for two census years. These could 
be obtained via IPUMS as in our case, or using summary aggregate counts if these 
are available. Such counts at two time points are the minimum requirement, but 
the more data that are available, the less uncertain estimates are likely to be. The 
amount of uncertainty and decisions about when it would be appropriate to imple­
ment this model are context specific. For example, a country that has relatively sta
ble population growth (with relatively constant or uniformly changing demographic 
rates) is likely to have less uncertainty around estimates than a country that has 
experienced fluctuating rates over time. Censuses can be available for any year, as 
historical, intermediate, and future populations can be reconstructed and projected. 

Table 2  Proportion of 2019 census county counts falling within, above, and below the 90% prediction 
intervals as estimated by the Bayesian CPP model

Age-group Proportion in Interval Proportion Above Proportion Below

15–19 .89 .02 .08
20–24 .89 .00 .09
25–29 .89 .04 .04
30–34 .91 .06 .02
35–39 .87 .01 .09
40–44 .92 .04 .04
45–49 .87 .04 .05
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However, note that the longer the projection period (i.e., the more historical the 
censuses), the larger the projection uncertainty. For countries with substantial 
international migration, we recommend extending the model to account for this 
component of population change. For example, if the size of the net-migration  
flows is known, the constraint on net-migration, which is currently set to be approx
imately zero, could be updated.

After we ran a series of validation measures, the proposed model outperformed 
a benchmark model of linear interpolation. In addition to having lower performance 
than Bayes CCP, with the simple interpolation method it is not possible to easily 
get estimates by county, because 2009 was the first year that the current geographic 
boundaries of counties were established. Another advantage of the Bayesian model is 
that the population estimates also have an associated uncertainty level, and that esti­
mating not only population counts but also mortality and migration rates allows us to 
better understand the drivers of population change by county.

There are several other advantages and contributions of this modeling framework 
to the estimation of subnational populations. The model is governed by a cohort 
component projection model, tracking cohorts as they move through time. This has 
advantages over more aggregate techniques, such as interpolation and extrapolation, 
because it allows us to understand trends in overall population as a process gov­
erned by separate components that add or remove population. This process takes into 
account intercensal events, such as trends in HIV/AIDS mortality, and produces esti­
mates and projections with uncertainty.

Second, the modeling framework proposes a parsimonious model for internal net-
migration across subnational areas. In cohort component models, migration compo­
nents are often assumed to be negligible or considered to just be the residual once 
mortality has been taken into account. Very few data usually exist on migration pat­
terns, and estimation of all migration components by age, region, and year becomes 
very intensive. After observing key patterns in the data, we proposed a net-migration 
model that separates migration patterns into independent age and time components. 
The result is an age-specific net-migration model with parameters that are easier to 
estimate when data are limited.

More broadly, one of the contributions of our proposed framework over existing 
work in this area is the use of mortality and migration models that have relatively 
strong functional forms, which allow plausible estimates to be produced even in the 
absence of good-quality data. Our approach to modeling mortality through the use 
of characteristic age patterns is inspired by the long demographic tradition of using 
model life tables when information on mortality is sparse.

While we have illustrated the utility of this approach in data-limited contexts, the 
framework can naturally be extended to include additional sources of data. For exam­
ple, if there exist observations of age-specific mortality rates at the subnational level 
(even at some ages), these data could be used as inputs to the mortality model. If more 
reliable data on internal migration flows were available, the existing migration process 
model—which assumes a fixed age schedule with varying magnitude over time—
could be reformulated to be more flexible. In general, to be able to handle population 
projection in a context of low data availability, the model proposed here includes mor­
tality and mortality process models that separate age and time trends into independent 
effects. Additional specific age–time effects were then captured by the multiplier ε. 
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If more data are available, the underlying process models could be extended to better 
understand these age–time effects and how they relate to either mortality or migration.

Another possible extension of this framework is to include other total population 
estimates, such as those from WorldPop, as additional “data” that could be used to 
inform estimates. We view this methodology and subnational population estimates 
produced from it as complementary to estimates produced by efforts such as the 
WorldPop project. As mentioned earlier, the primary goal of the WorldPop estimates 
is to produce extremely fine-grained estimates of total population, whereas we are 
more interested in understanding population patterns by age and sex and the underly­
ing components of population change within larger subnational areas.

This model was developed to estimate and project adult populations only, and in 
particular, women of reproductive age. The model appears to perform well for this sub­
population. Notably, a limitation of the model is that we do not estimate populations 
from birth or at older age populations. We do not explicitly model fertility within the 
cohort component projection framework, but rather use information from censuses and 
WPP to place plausible prior distributions on the initial age-group of interest (in this 
case, ages 15–19). A possible extension to the framework proposed here would be the 
modeling of a larger set of age-groups, starting at birth, and explicitly incorporating fer­
tility rates. As for mortality and migration models, a model for fertility would need to be 
motivated by the type and amount of data available at the subnational level.

While this model framework has the advantage of explicitly including a compo­
nent to estimate internal migration flows, a limitation is that we assume there are no 
biases in the observed migration data. In practice, this may not be true: one can imag­
ine recall biases and “heaping” biases creating underreporting. From exploration of 
other migration-related data from censuses and Demographic and Health Surveys, it 
appears these data are the least likely to exhibit such biases. Thus, in the absence of 
better quality data on migration, we make the assumption that the observations from 
this census question have no bias.

Another limitation is related to the national constraint in the model. We set the 
national totals to be between approximately 90% and 110% of the WPP national 
population estimates. Ideally, we would be able to use uncertainty around the WPP 
estimates within this model, however, currently this is not available.

The incorporation of a cohort component projection model into a probabilistic 
setting allows for different sources of uncertainty, such as sampling and nonsampling 
error, to be included in the modeling process. The Bayesian hierarchical framework 
allows information from different data sources to be consolidated without the need 
for postestimation redistribution changes, as is often the case with subnational popu­
lation estimation (Swanson and Tayman 2012). In addition, compared with traditional 
deterministic techniques, it allows for increased flexibility in modeling population 
processes while still keeping the basis of an underlying demographic process. ■
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