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Competing Effects on the Average Age of Infant Death

Monica Alexander and Leslie Root

ABSTRACT  In recent decades, the relationship between the average length of life for those 
who die in the first year of life—the life table quantity 1 a0—and the level of infant mortal­
ity, on which its calculation is often based, has broken down. The very low levels of infant 
mortality in the developed world correspond to a range of 1

 a0  quantities. We illustrate the 
competing effect of falling mortality and reduction in preterm births on 1 a0 through two 
populations with very different levels of premature birth—infants born to non-Hispanic 
White mothers and infants born to non-Hispanic Black mothers in the United States—
using linked birth and infant death cohort data. Through simulation, we further demon­
strate that falling mortality reduces 1 a0, while a reduction in premature births increases it. 
We use these observations to motivate the formulation of a new approximation formula 
for 1 a0 in low-mortality contexts, which aims to incorporate differences in preterm birth 
through a proxy measure—the ratio of infant to under-five mortality. Models are built and 
tested using data from the Human Mortality Database. Model results and validation show 
that the newly proposed model outperforms existing alternatives.

KEYWORDS  Infant mortality  •  Prematurity  •  Life table

Introduction

The average length of life for those who die in the first year of life, 1 a0, is an important 
life table quantity, the first building block of the calculation of person-years lived that 
ultimately sums to the expectation of life at birth. However, the data required to calcu­
late 1 a0 exactly are often not readily available, and hence producers of life tables usually 
rely on empirical relationships between the overall level of infant mortality and aver­
age age at death to calculate an approximate 1 a0. The most common of these relation­
ships, the Coale–Demeny and Keyfitz–Flieger formulas, rely on the general rule that 
as infant mortality falls, deaths become increasingly concentrated early in the interval, 
so 1 a0 also falls (Coale et al. 1983; Keyfitz and Flieger 1971). The Keyfitz–Flieger for­
mula, for example, which is referenced in central demographic textbooks (e.g., Wachter 
2014), is 1 a0 = 0.07 +1.71M0, where 1 M0 is the infant mortality rate.

This relationship can be explained with reference to Bourgeois-Pichat’s theory 
(Bourgeois-Pichat 1951a, 1951b), which assumes all infant deaths can be categorized  
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as arising from either endogenous or exogenous causes, with the latter tending to 
occur later in the first year. As overall mortality goes down, exogenous causes are 
increasingly eliminated, and the distribution of infant deaths shifts toward the endog­
enous causes, which are more likely to cause death relatively soon after birth.

However, at the very low levels of infant mortality currently observed in the devel­
oped world, the monotonic relationship between 1 a0 and infant mortality is no longer 
the case, and in fact, 1 a0 has been rising in many countries since the 1970s. Andreev 
and Kingkade (2015) attributed this shift to medical advances that reduce very early 
deaths due to congenital conditions and conditions of prematurity. Furthermore, they 
noted that the relationship between level of mortality and 1 a0 becomes comparatively 
weak at these low levels of mortality. In this article, we investigate the reason for this 
and illustrate two competing effects on 1 a0: the overall level of infant mortality and 
the share of births that are premature.

Recent work on age patterns in early-life mortality has not taken premature birth 
into consideration as a determinant of either the level or the shape of infant mortality 
(e.g., Galley and Woods 1999; Mejía-Guevara and Tuljapurkar 2019; Mejía-Guevara 
et al. 2019). This is no doubt partly because of the lack of availability of data on pre­
mature birth (Blencowe et al. 2012). However, premature birth is clearly important in 
describing infant mortality patterns; despite advances, conditions of prematurity still 
play an outsize role in infant death (Callaghan et al. 2006). And because prematurity 
is difficult to predict and prevent and is correlated with a number of individual-level 
factors, including maternal age, health, and behavior, as well as socioeconomic status 
and race, it may vary substantially both among and within populations with relatively 
low infant mortality (Purisch and Gyamfi-Bannerman 2017; Tucker and McGuire 
2004). These two facts taken together indicate that an ideal model of infant mortality 
would include information on the preterm birth rate.

We first illustrate the competing effect of mortality and prematurity rates on the aver­
age age of infant death, 1 a0, through an example using data from two U.S. populations 
with very different levels of premature birth—infants born to non-Hispanic White moth­
ers and infants born to non-Hispanic Black mothers. Next, we perform a simulation exer­
cise, calculating 1 a0 at a wide range of mortality and prematurity levels, to further illustrate 
these competing effects. We then utilize these observations in developing a new formula 
for 1 a0, which aims to account for not only the level of infant mortality, but also the level 
of prematurity, using as a proxy the ratio of infant to under-five mortality. Our proposed 
approximation approach outperforms existing alternatives and provides new insight into 
understanding patterns of the average age of infant death in low-mortality settings.

The Relationship Between 1 a0, Infant Mortality, and Prematurity

Although infant mortality relates to all deaths in the first year, the distribution of these 
deaths over time is far from uniform. Figure 1 shows the distribution of infant deaths 
in the United States in 2012. The distributions have been plotted separately for preterm 
and full-term births, where preterm births are defined as those occurring before a gesta­
tional age of 37 full weeks from the last menstrual period. Irrespective of the prematu­
rity of births, the largest share of infant deaths occurs in the first several days. However, 
as Figure 1 shows, the distribution is particularly skewed and concentrated for preterm 
births, with more than 60% of infant deaths occurring within the first five days.
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In terms of the relationship between overall infant mortality, prematurity, and the 
distribution of death times, the following general observations can be made:

1.	 The distribution of the timing of infant deaths is left skewed, with the majority 
of deaths in the first few days.

2.	 All other things being equal, the degree of this left skewness increases as mor­
tality decreases.

3.	 The distribution of the timing of infant deaths conditional on births being pre­
mature is also heavily left skewed, with an even larger density of deaths in the 
first few days.

4.	 The share of births that are premature tends to decrease as mortality decreases 
(World Health Organization 2018).

Why does the relationship between 1
 a0 and infant mortality become unclear at 

lower mortality levels? Because statements 1 and 2 have the opposite effect from 
statements 3 and 4 on 1

 a0. As overall mortality conditions improve, we expect that 
exogenous causes of death that occur later in the first year of life decrease, and so 1 a0 
will decrease. However, as overall mortality conditions improve, we also expect the 
share of births that are premature to decrease, and so 1 a0 will increase. These obser­
vations imply that trends in 1 a0 over time may go up or down, and that the degree of 
similarity between populations’ infant mortality rates does not necessarily imply any 
particular degree of similarity between their 1 a0 values (and vice versa).

These competing effects are illustrated in this section: first, by examining infant 
deaths in the United States by race, and second, by simulating the effects on 1

 a0 of 
changes in overall mortality risk and the prevalence of prematurity.

Example: U.S. Infant Deaths by Race

Racial disparities in U.S. infant mortality are long-standing and well known. Although 
mortality has fallen for all racial and ethnic groups, for over 30 years, babies born 
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Fig. 1  Proportion of infant deaths by five-day intervals, United States, 2012 birth cohort. Note the differing 
y-axis scales. Source: Data via the National Center for Health Statistics National Vital Statistics System.
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to non-Hispanic Black mothers have consistently died at more than twice the rate of 
those born to non-Hispanic White mothers (Ely and Driscoll 2019; Hummer et al. 
1999; Mathews et al. 2015). Given this substantial inequality, it could be assumed 
that the average age of infant death, 1

 a0, would be noticeably higher for the Black 
population than the White population. However, as illustrated in this section, this is 
not the case. The racial disparity in infant mortality is not simply one of magnitude; 
patterns of preterm birth, low birth weight, age at death, and cause of death all differ 
substantially between these two groups (Bediako et al. 2015; Ely and Driscoll 2019; 
MacDorman and Mathews 2011; Riddell et al. 2017). Indeed, it is in part because of 
higher rates of preterm birth that infants born to non-Hispanic Black mothers die so 
much more frequently. These high rates of prematurity, in turn, are caused not only 
by broad and well-documented socioeconomic disparities between Black and White 
populations, but by the health effects on Black mothers of lifelong exposure to racism 
and by medical racism experienced during pregnancy (Alhusen et al. 2016; Kramer 
and Hogue 2009). The interaction of these factors causes surprising patterns in 1 a0.

Data

Data on deaths in the first year of life for infants born to non-Hispanic Black (NHB) 
and non-Hispanic White (NHW) mothers come from the National Bureau of Economic 
Research collection of U.S. Birth Cohort Linked Birth and Infant Death Data of the 
National Center for Health Statistics’ National Vital Statistics System, years 2008–
2012 (National Bureau of Economic Research 2020). Data on live birth counts for 
the same years, by gestational age, mother’s race, and sex, come from the Centers for 
Disease Control and Prevention’s publicly available WONDER database (Centers  
for Disease Control and Prevention 2020). Cohort prematurity rates were calculated 
as the number of premature births divided by the total number of live births, and 
infant mortality rates were calculated as the number of deaths divided by the number 
of live births. Mortality was calculated according to race, birth cohort, premature sta­
tus, and age at death. In line with WHO classification, premature status was grouped 
into four categories on the basis of the last menstrual period (LMP) measure of gesta­
tional age: extremely preterm (born at <28 full weeks of gestation), very preterm (28 
to <32 full weeks of gestation), later preterm (32 to <37 full weeks of gestation), and 
full-term (37 full weeks of gestation or more) (World Health Organization 2018). Age 
at death was split into first-week (<7 days old at death), neonatal (<28 days; includes 
first-week deaths), and post-neonatal (28 days or older at death). An average of 3,021 
births (0.1% of the total) and 147 deaths (0.8% of the total) were excluded each year 
owing to missing gestational age data.

Mortality, Prematurity, and Average Age at Death

Infant mortality rates for NHB and NHW populations in 2012, stratified by age at 
death and prematurity of birth, are shown in Table 1.1 Large differences are observed 

1  Because there is no large time trend in racial difference—that is, infant mortality is declining in a sim­
ilar way for both racial groups over this period—figures are given for 2012, the most recent birth cohort 
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in mortality rates by race that are not stratified by prematurity. Overall mortality 
is 2.21 times higher for infants born to NHB mothers than for those born to NHW 
mothers, at 11.00 per 1,000 versus 4.98 per 1,000. When stratifying by age at death, 
a gradient is evident: racial ratios for mortality are highest in the first week (2.29), 
somewhat lower for neonatal mortality (2.24), and lowest, though still above two, for 
post-neonatal mortality (2.15).

Among premature infants, mortality rates by gestational age are similar for those 
born to NHB and NHW mothers. For the extremely preterm, the ratio of the NHB 
mortality rate to the NHW mortality rate is 0.99. For the very preterm, the ratio is 
1.00, and for later preterm infants, it is 1.04. For full-term births, however, NHB mor­
tality is 1.70 times higher than NHW mortality.

This mismatch between racial patterns of mortality by gestational age and racial 
patterns by age at death is compositional; it is explained by a large difference in the 
distribution of births by gestational age, shown in Table 2. Fewer infants born to NHB 
mothers are born at full term, and among those born early, they are more likely than 
those born to NHW mothers to be extremely or very preterm. Because mortality risk 
drops rapidly with gestational age, this means that a larger share of infants born to 
NHB mothers are at high risk of dying.

This compositional difference, in turn, leads to an instance of Simpson’s paradox in 
the average age of infant death, wherein a trend observed in aggregate reverses when 
data are decomposed into subgroups. In aggregate, infants born to NHB mothers 
have a slightly lower average age at death than infants born to NHW mothers, 40.87 
versus 45.29 days. This is somewhat surprising, given NHB infants’ higher mortal­
ity: as described earlier, a shorter 1 a0 is generally associated with lower overall mor­
tality and a lower share of preventable mortality, as deaths later in infancy are more 
likely to be caused by external factors and treatable diseases (Andreev and Kingkade 
2015). And indeed, within each subgroup by gestational age at birth, the average age 
at death is higher for NHB infants, indicating a greater proportion of deaths later 
in infancy. The difference is marked for all premature infants, regardless of gesta­
tional age: among full-term births, NHB infants’ 1

 a0 is only 3% longer than that of  
NHW infants.

for which data are available. Figures for four previous cohorts may be found in the online Appendix A. 
Similarly, although 1 a0, as a life table quantity, is usually calculated by sex, sex differences are not material 
to the patterns of prematurity and mortality by race and are thus not included here.

Table 1  Infant mortality rates per 1,000 for U.S. children of non-Hispanic Black and non-Hispanic White 
mothers, and the ratio between them

By Age at Death By Gestational Age at Birth

All
First 
Week Neonatal

Post-
neonatal

Extremely 
Preterm

Very 
Preterm

Later 
Preterm

Full-
Term

Black 11.00 5.94 7.30 3.70 363.18 38.86 9.01 3.54
White 4.98 2.60 3.26 1.72 365.32 38.90 8.65 2.09
Ratio 2.21 2.29 2.24 2.15 0.99 1.00 1.04 1.70 D
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Table 2  Rates of preterm and full-term births per 1,000 U.S. live births, and mean age at death (days) by  
gestational age at birth, for non-Hispanic Black and non-Hispanic White mothers, and the ratio between them

Aggregate
Extremely 
Preterm

Very 
Preterm

Later 
Preterm

Full-
Term

Birth Rates (per 1,000)
  Black — 16.79 20.32 128.15 834.75
  White — 5.36 10.14 87.42 897.09
  Ratio — 3.13 2.00 1.47 0.93
Mean Age at Death (days)
  Black 40.87 14.21 41.73 68.26 84.97
  White 45.29 9.93 31.53 51.05 82.85
  Ratio 0.90 1.43 1.32 1.34 1.03

Illustrating the Competing Effects Through Simulation

To further investigate the competing effects on 1
 a0, we perform a simulation exer­

cise that allows us to change the overall level of mortality and prematurity indepen­
dently, and then assess the consequent change in 1 a0.2 Specifically, we carry out two 
simulations:

	 •	 Scenario 1: Vary the risk of infant mortality of a population, holding the rate of 
prematurity constant.

	 •	 Scenario 2: Vary the share of premature births in a population, holding mortal­
ity risk constant.

To simulate plausible times of infant deaths, we need a suitable expression for 
the distribution of infant deaths. As illustrated in Figure 1, the distribution of infant 
deaths at the low levels of mortality we are interested in is highly skewed, with a large 
proportion of deaths occurring in the first week. The shape of these distributions is 
not readily captured by any classic parametric distributions. However, we found that 
the shape of infant death distributions was well captured by a piecewise constant haz­
ard (PCH) model, with time intervals partitioned at days 1–7, 14, 28, 60, 90, 180, and 
365. The PCH model assumes constant exponential hazards within each of these time 
intervals, which allows the model to be estimated using Poisson regression.

PCH models were fit separately to all full-term births/deaths and all preterm 
births/deaths using the 2012 U.S. births and deaths data. Once estimates of hazards 
were obtained, we simulated different sets of survival times based on varying (1) the 
overall infant mortality risk factor and (2) the overall share of births that are premature. 
Details on the statistical model and simulation can be found in online Appendix C.

The results of these simulations are shown in Figure 2, which illustrates that 
changes in overall infant mortality and changes in prematurity act in opposite direc­
tions. For increases in the risk profile of mortality, the average age of infant death 

2  This independent variation is not meant to imply that levels of mortality and prematurity are indepen­
dent, but only that, because other factors also contribute to a population’s mortality rate, it is possible for a 
population at a given level of mortality to have a range of levels of premature birth, and vice versa.
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Fig. 2  (continued)

steadily increases until a risk factor of around 2, when the estimated 1
 a0 plateaus 

(panel a). This plateau is a consequence of the shape of the death distribution, with 
increases in later infant mortality being balanced out by the increases in high hazards 
in the earlier-infant mortality. For increases in the share of premature deaths (panel 
b), the average age of infant death steadily declines. It is worth noting that the magni­
tude of changes in 1 a0 in response to changes in prematurity is larger than that based 
on increasing the overall risk of mortality. This is broadly consistent with the pattern 
observed in the U.S. data: faced with both higher rates of prematurity and a higher 
overall risk of mortality, NHB infants have a shorter 1 a0 than NHW infants, not a lon­
ger one. Panel c of Figure 2 combines variability across prematurity and mortality 
risk to illustrate changes in 1

 a0 in two dimensions. The lighter the color, the higher 
the value of 1 a0. While 1 a0 increases monotonically with increased mortality risk and 
decreases monotonically with increased prematurity, the trajectory of 1

 a0 over time 
depends on the relative changes across the two dimensions.

A New Approximation Formula for 1 a0 in Low-Mortality Conditions

In this section, we outline a new proposed model to estimate 1 a0, the data we used for 
model building and evaluation, and our evaluation and validation strategy. In brief, 
we propose the ratio of infant to under-five child mortality as a proxy for the prev­
alence of prematurity, and include this ratio in a model for 1 a0 along with the infant 
mortality rate. We compare the performance of our new proposed model to the exist­
ing best alternative, a piecewise linear model, as proposed by Andreev and Kingkade 
(2015), and show that it outperforms this model on several model evaluation metrics.
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Fig. 3  Relationship between the ratio of infant to under-five mortality and prematurity in the United States. 
NHB = non-Hispanic Black. NHW = non-Hispanic White.

A Proxy for Prematurity

We have illustrated that the rate of premature birth appears to play an important role 
in 1

 a0 at low rates of infant mortality, and an ideal model for calculating 1
 a0 would 

include information on both infant mortality and prematurity. Unfortunately, with the 
exception of U.S. microdata, detailed premature birth data are not widely available 
(Blencowe et al. 2012).

As an alternative measurement, we argue that, at these low levels of mortality, 
the ratio of early (i.e., infant) to total (i.e., under-five) child mortality proxies the 
early versus late pattern within infant mortality. That is, at a given level of infant 
mortality, a higher level of overall mortality for those under age five signals that a 
relatively larger share of infant mortality is due to exogenous causes, while a lower 
level of overall under-five mortality signals the opposite—that infant mortality is 
more skewed toward endogenous causes arising from premature birth. Indeed, look­
ing at the data on infant and child mortality and prematurity in the United States 
by sex and race/ethnicity, there is a strong positive relationship between the ratio 
of infant to under-five mortality (IMR/U5MR) and the proportion of births that are 
premature (Figure 3). The correlation between these two indicators across all groups 
is .95, and while the global regression equation is shown in Figure 3, the strong pos­
itive association also holds for each sex and race/ethnicity group. Thus, motivated 
by the United States, where data on mortality and prematurity are readily available, 
there is evidence to suggest the ratio of IMR to U5MR is a reasonable proxy for 
prematurity.
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Fig. 4  Relationship between the ratio of infant to under-five mortality and 1a0 in low-mortality conditions. 
IMR = infant mortality rate.

Turning to the relationship between the ratio and the average age at infant death, 
we can see a clear negative relationship based on available data across all countries in 
the Human Mortality Database (Figure 4). Using the ratio as an explanatory variable 
within a model for 1 a0 is advantageous as it is easily calculable for all countries using 
existing data and estimates. For instance, the United Nations Inter-agency Group on 
Mortality Estimation produces infant mortality and under-five mortality estimates for 
all member countries.3

Proposed Model

We propose a linear model in which the 1
 a0 is related to the infant mortality rate, 

defined as deaths in a particular year to those under age 1 per 1,000 live births, and 
the ratio of the infant to the under-five mortality rate, which is defined as deaths to 
those under age 5 in a particular year per 1,000 live births:4

	
1
 a0i = α +β1(IMR i )+β2

IMR i

U5MR i

⎛
⎝⎜

⎞
⎠⎟
+ εi .

	 (1)

3  Available at https:​/​/childmortality​.org.
4  In cohort perspective, calculated as deaths in a cohort per 1,000 births in that cohort, these two quanti­
ties would be equivalent to 1 q0 and 5

 q0, the probability of dying before age 1 and the probability of dying 

D
ow

nloaded from
 http://dup.silverchair.com

/dem
ography/article-pdf/59/2/587/1511322/587alexander.pdf by guest on 23 April 2024

https://childmortality.org


597Competing Effects on the Average Age of Infant Death

For reference, existing models for 1 a0 (as in Andreev and Kingkade (2015))5 have the 
form of a piecewise linear relationship with 1 q0 with one “cutpoint” (θ) at which the 
slope of the linear relation with 1 q0 changes:6

	 1
 a0i = α +β1(1

 q0i )+β2(1
 q0i − θ)+ εi . 	 (2)

One of the main advantages of the proposed model over previous models is that 
it explicitly accounts for the two competing effects on 1

 a0, by incorporating addi­
tional readily available data. In contrast, existing methods model 1 q0 as a mathemat­
ical function of infant mortality rate using a set of arbitrary splines, without taking 
into consideration the demographic or biological reasons for why the relationship 
between 1 a0 and infant mortality may change with the level of mortality.

Data

This analysis draws on data compiled by the Human Mortality Database (HMD), 
a joint project of the University of California, Berkeley (United States), and the 
Max Planck Institute for Demographic Research (Germany) that collects, validates, 
cleans, and adjusts detailed data on period and cohort mortality (available online at 
https:​/​/www​.mortality​.org). It currently includes 41 countries with reliable mortality 
statistics. HMD data do not allow for direct observation of 1 a0, but it can be calculated 
using the Lexis triangle method detailed by Andreev and Kingkade (2015), whereby 
the average age of infant death is the ratio of the number of deaths in the upper 
Lexis triangle—that is, deaths that occur under age 1 in year x + 1 to those born in 
year x—to the total number of deaths under age 1 to those born in year x. Following 
Andreev and Kingkade, we use the initial raw numbers of deaths by Lexis triangle in 
these calculations, avoiding any adjustment that could bias the estimate of 1 a0. With 
some exclusions, this analysis makes use of raw Lexis triangle death data from all 
countries and cohorts currently available through HMD.7 The following countries are 
excluded: Bulgaria (before 2009), Estonia (before 1992), and Belarus, Russia, and 
Ukraine (entirely), for incomplete conformity to the WHO definition of “live birth,” 
which leads to an overcount of stillbirths and reduction in first-day infant mortality; 
Chile and Taiwan, for suspected problems with the registration of very early infant 
deaths; Iceland and Luxembourg, for very low numbers of infant deaths resulting in 
unusual 1 a0 or mortality rates; the Netherlands (before 1950), because of data adjust­
ments made to account for differences in the definition of live birth; Switzerland 
(before 1880), for irregularities implying unusual migration patterns at age 0; and 

before age 5, multiplied by 1,000; period perspective complicates the picture, since it is the case for both 
quantities that the numerator and denominator no longer refer to precisely the same cohort of children.
5  Andreev and Kingkade (2015) use the notation 1

 q0 but refer to it as the infant mortality rate; in their 
calculations, it is somewhat unclear whether they are using the period IMR as it is usually calculated 
(described above) or the probability of death.
6  Note that Andreev and Kingkade (2015) define two cutpoints, the second being the level of 1

 q0 above 
which 1 a0 is estimated to be constant. However, as we are focusing on low levels of mortality, we are more 
interested in comparisons just in the range of the first cutpoint.
7  Data were downloaded May 25, 2020.
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Belgium (1941–1945 and 1958–1960), Israel, and Poland (entirely), for implausible 
mortality rates or 1

 a0 estimates. Populations whose inclusion would result in dupli­
cation of data were also excluded (e.g., because East Germany and West Germany 
are included separately, the aggregate data available for Germany as a whole are not 
included). In addition, an infant mortality cutoff of 80 per 1,000 for females and 95 
per 1,000 for males was applied, as this analysis focuses on low-mortality contexts. 
This yielded 2,852 1 a0 observations from 27 countries or areas, for cohort years rang­
ing from 1902 to 2018, broken down by sex (1,430 female observations and 1,422 
male). A table listing all included populations can be found in the online Appendix A.

Modeling Strategy

Our primary goal is to estimate parameters in Eq. (1), which we will refer to as the 
“ratio model,” and compare the performance of this model to the existing best alter­
native proposed by Andreev and Kingkade (2015). We estimated model parameters 
for both the ratio model and Eq. (2), that is, a piecewise linear model, in a Bayesian 
framework using a Hamiltonian Monte Carlo algorithm, implemented using the Stan 
programming language in R (Carpenter et al. 2017).8

To evaluate model performance, we split the available data into two separate data 
sets: the “training” data set, which comprises a random sample of 80% of all the 
available data, and a “test” data set, which comprises the remaining 20% of data. 
The idea is that the estimates of the parameters in the ratio and piecewise models are 
obtained by fitting models on the training data set, and then the predictive accuracy 
of each model is evaluated using the test data set. This train/test splitting technique, 
which is common in statistical learning methods, minimizes issues of over-fitting and 
better allows for the evaluation of out-of-sample fit (James et al. 2013).

Our modeling strategy introduces two comparison issues: differences in data and 
differences in estimation methods. First, we have at our disposal substantially more 
data from HMD than was available five or more years ago, which means parameter 
estimates for a piecewise linear, as was estimated by Andreev and Kingkade, may 
differ purely because of data reasons. Second, our choice to estimate models within 
a Bayesian framework using Stan also differs from Andreev and Kingkade’s analy­
sis. To account for these differences, in addition to estimating the parameters for the 
piecewise linear model on the training data set, we also obtain estimates on a data set 
that corresponds to the data used by Andreev and Kingkade (2015) (termed the “AK” 
data set). In doing so, we show that our estimates for a piecewise linear model fit to 
AK data do not differ significantly from Andreev and Kingkade’s estimates.

To summarize, we fit two models (the ratio model and the piecewise linear model, 
Eqs. (1) and (2)). We estimated the ratio model and piecewise linear model by sex and 
also for both sexes combined. Both the ratio model and piecewise linear model were 
estimated on the training data sets (male, female, and both sexes combined) and the 
AK data set. All models, including the estimates presented by Andreev and Kingkade 

8  We chose to estimate models using Stan for two reasons; first, uncertainty intervals (Bayesian credible 
intervals) are a natural by-product of the estimation process (unlike other optimization options that are usu­
ally required to estimate the position of the cutpoints), and second, the ability to calculate approximations 
to the leave-one-out cross-validation using Stan allows us to easily compare and evaluate models.
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(2015), were then evaluated on several metrics, as discussed in the following, includ­
ing their predictive performance based on the test data sets, and also on data by sex 
and race/ethnicity in the United States.

Evaluation Metrics

To compare candidate models for 1
 a0 and evaluate their performance, several eval­

uation metrics were used. First, we calculated the root-mean-square error (RMSE), 
which is defined as

	
RMSE = i  = 1

N∑ 1
 a0(i)− 1

 â0(i)( )2

N
,
	

(3)

where 1 a0(i) is the ith observed 1 a0 value and 1
 â0(i) is the corresponding fitted value 

for all N  observations i = 1,  . . . , N .
The RMSE was calculated on three different data sets for each of the three models 

(the ratio, piecewise, and AK model) under consideration:

	1.	 The training data set, that is, the HMD data on which the model was fitted, 
which comprises all available data (as described earlier) with 20% excluded. 
This is referred to as the in-sample RMSE and reflects the goodness of model 
fit within the data set that was used for estimation.

2.	 The test data set, which is the 20% of HMD data that was excluded. This is 
referred to as the out-of-sample RMSE and reflects the model fit on a “new” 
data set.

3.	 The Andreev and Kingkade (AK) data set, that is, the set of HMD data that 
was used by Andreev and Kingkade (2015).9 This was included to ensure that 
the piecewise estimates in Andreev and Kingkade (2015) and our piecewise 
estimates were as comparable as possible.

As an additional validation exercise, we also calculated the RMSE for the ratio and 
piecewise models based on 1

 a0 values calculated from the U.S. microdata discussed 
earlier.

In addition to evaluating models based on in- and out-of-sample RMSE, we also 
used approximate leave-one-out cross-validation (LOO-CV) to assess relative model 
performance of the piecewise linear and the ratio model. LOO-CV refers to the tech­
nique of leaving out one data observation (the ith data point), refitting the model 
to the new data set with everything except point i, and evaluating the ability of the 
model to predict point i. This process can be repeated N  times, leaving out each of 
the i points and then assessing predictive power each time. In practice, fitting each 
model N  times is computationally inefficient, and so we used approximate LOO-CV 
using Pareto smoothed importance sampling (Vehtari et  al. 2017). This was done 
using the loo package in R (Vehtari et al. 2020). Approximate LOO-CV gives an 

9  As discussed, we used similar criteria for data inclusion as Andreev and Kingkade. However, a great deal 
of new data has been added to HMD since Andreev and Kingkade conducted their analysis, in early 2011, 
so their data set comprises only a subset of our data.
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estimate for the expected log predictive density (ELPD). The higher the ELPD, the 
better the model fit.

Code and materials to reproduce our analysis can be found at https:​/​/github​.com​/
MJAlexander​/a0​-competing​-effects.

Results

Table 3 shows the estimated coefficients for Eqs. (1) and (2) for various sex and data 
combinations. The first two rows show the estimates from Andreev and Kingkade 
(2015) for reference. The third and fourth rows show the results of estimation of 
the piecewise model fit to a data set that is the same as that used by Andreev and 
Kingkade (2015). These results suggest that our estimates are very similar, which 
is encouraging given that our estimation approach is quite different. The next three 
rows show results of the same piecewise model that has been fitted to all available 
HMD data. Notice that we also estimate this model for both sexes combined; this was 
motivated by the fact that, based on looking at the 95% uncertainty bounds of the 
sex-specific estimates, there is generally no significant difference between estimates 
for males and females. The coefficient estimates are slightly different than for the 
AK data case, which perhaps is not surprising given the addition of many more data 
points at increasingly lower mortality conditions.

The last three rows of Table 3 show the coefficient estimates for females, males, 
and both sexes combined for the ratio model (shown in Eq. (1)). The sign of the coef­
ficient estimates of the ratio model suggests that as infant mortality rises, so does 1 a0, 

Table 3  Coefficient estimates [and 95% credible intervals] for all model combinations

Model Equation Sex α̂ β!
1 β!

2
θ!

AK 2 F 0.1490 −2.0867 4.1075 0.0170
AK 2 M 0.1493 −2.0367 3.4994 0.0226
Piecewise 

(AK data) 2 F 0.149
[0.141, 0.155]

−1.984
[–2.820, −1.093]

4.856
[3.874, 5.695]

0.014
[0.013, 0.016]

Piecewise 
(AK data) 2 M 0.150

[0.144, 0.158]
−2.162

[–2.875, −1.588]
4.647

[4.027, 5.410]
0.019

[0.017, 0.021]
Piecewise 2 F 0.138

[0.134, 0.143]
−0.913

[–1.587, −0.328]
4.249

[3.619, 4.976]
0.017

[0.015, 0.019]
Piecewise 2 M 0.140

[0.136, 0.145]
−1.268

[–1.737, −0.883]
4.478

[3.987, 4.975]
0.023

[0.021, 0.025]
Piecewise 2 Both 0.139

[0.135, 0.142]
−1.004

[–1.381, −0.647]
4.297

[3.923, 4.708]
0.021

[0.019, 0.022]
Ratio 1 F 0.405

[0.375, 0.436]
1.975

[1.867, 2.084]
−0.359

[–0.398, –0.322]
—

Ratio 1 M 0.420
[0.386, 0.454]

1.551
[1.432, 1.669]

−0.382
[–0.425, −0.341]

—

Ratio 1 Both 0.426
[0.403, 0.447]

1.749
[1.666, 1.834]

−0.387
[–0.414, −0.359]

—

Note: AK = Andreev and Kingkade.
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but as the fraction of under-five mortality that is attributed to infant mortality rises, 
1
 a0 falls. The coefficient estimates on infant mortality (β̂1) are 1.5–1.9, which suggests 
that for every 1 per 100 increase in infant mortality, 1 a0 will increase by 0.015–0.02 
years, or somewhere between 5 to 7 days, holding the ratio constant. The coefficient 
estimates on the ratio (β̂2) suggest that, as the ratio increases by 0.1, 1 a0 decreases by 
0.03–0.04 years, around 11–15 days, holding infant mortality constant.

Model Evaluation

Table 4 shows in-sample and out-of-sample RMSEs for each model, for each sex, 
and for both sexes together. The smaller the RMSE, the better the model fit. Note that 
for the estimates from AK data, we can calculate RMSE only for males or females, 
because estimates were not provided for both sexes combined. In general, the ratio 
model RMSEs are the smallest for all sexes, suggesting the fit of this model is superior 
to both the training (in-sample) and test (out-of-sample) data sets. The RMSE “gain” 
going from the piecewise model to the ratio model is largest in the out-of-sample  
contexts, suggesting that the ratio model performs relatively well in predicting 1

 a0 
based on new data.

Finally, we can compare the ELPD for the piecewise model and ratio model across 
all sex combinations. The higher the ELPD, the better the model’s predictive ability. 
The difference in ELPD (piecewise minus ratio) and the standard error for that differ­
ence is −54.27 and 20.47, respectively, for females; −10.96 and 21.67 for males; and 
−83.98 and 30.89 for both sexes combined. The results suggest that in all cases, the 
ratio model has a higher ELPD (i.e., the difference is negative), although the differ­
ence is not significant in the male case.

Evaluation on U.S. Data

One final model evaluation exercise involved calculating the accuracy of the ratio and 
piecewise models when estimating 1 a0 for the U.S. population by sex and race/ethnicity, 
where the microdata are available so the true value of 1 a0 is known. Table 5 shows the 
RMSE calculated by race and sex for each of the models (the estimated values from the 

Table 4  In- and out-of-sample root-mean-square errors for different models

Type Sex AK Piecewise Ratio

In-sample F 0.038 0.038 0.037
In-sample (AK data) F 0.035 0.038 0.036
Out-of-sample F 0.038 0.038 0.036
In-sample M 0.036 0.036 0.036
In-sample (AK data) M 0.042 0.038 0.038
Out-of-sample M 0.044 0.041 0.040
In-sample Both — 0.038 0.037
Out-of-sample Both — 0.041 0.038

Note: AK = Andreev and Kingkade.
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ratio model were calculated using the coefficient estimates for both sexes combined). 
The ratio model outperforms the piecewise model in all cases.

Discussion

This article increases our understanding of how and why length of life varies with 
other forms of inequality. We illustrate that higher infant mortality tends to raise 1 a0, 
while a rising share of births that are premature tends to lower it. Thus, at a given 
level of infant mortality, a population with more premature birth will have a lower 
1
 a0. This paradox explains the observed similarity of 1 a0 among U.S.-born children of 
Black and White non-Hispanic mothers; while children of Black mothers have higher 
mortality, thus implying a longer 1

 a0, they also have higher rates of prematurity, 
implying a shorter one. In the U.S. case, the prematurity disadvantage outweighs the 
mortality disadvantage, resulting in a shorter 1 a0 for infants born to Black mothers.

We believe this is an important descriptive finding; it illustrates that the classic 
association of shorter 1

 a0 with better mortality conditions does not hold at low lev­
els of mortality, where the role of prematurity is greater. As medical advances have 
arisen that have tended both to lower infant mortality and to increase prematurity by 
allowing the survival of infants who would previously have been counted as still­
births, the mechanisms that underlie infant survival and mortality have changed, dis­
rupting well-known demographic patterns such as the Bourgeois-Pichat theory. Put 
simply, demographers must update their models to reflect this.

Our findings on racial disparities in the length of life for infants who die invite 
further exploration. For example, why is it that, as we have shown, length of life is 
drastically longer for premature Black infants who die than for premature White ones, 
while for full-term infants, the difference in length of life is minor? Work in medicine, 
public health, and demography to explain the early mortality advantage among pre­
mature Black infants is one avenue for this work and has huge potential population 
health benefits. On the other side, there may exist patterns by cause of death that 
explain the disparity in length of life and indicate potential public health interventions 
to help curb the later infant mortality among premature Black infants.

Table 5  Root-mean-square errors (RMSEs) of piecewise and ratio models fitted to U.S. data by sex and 
race/ethnicity

Race Sex Model RMSE

NHB F Ratio 0.0090
NHB F Piecewise 0.0409
NHW F Ratio 0.0129
NHW F Piecewise 0.0689
NHB M Ratio 0.0080
NHB M Piecewise 0.0355
NHW M Ratio 0.0139
NHW M Piecewise 0.0710

Note: NHB = non-Hispanic Black. NHW = non-Hispanic White.
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Finally, our findings on length-of-life patterns in the U.S. context—the fact that 
prematurity rates are so much higher for Black infants that they completely swamp 
the effect on 1 a0 of higher Black late-in-infancy mortality—illustrate the extent of the 
U.S. premature birth crisis and its enormous role in the Black infant mortality dis­
advantage. Further research in this area is crucial, as premature birth remains poorly 
understood, is a key point of interface between adult and child health, and poses a 
significant challenge for population health.

In the second half of the article, we used this descriptive finding to motivate the 
formulation of a new approximation for 1 a0 in low-mortality conditions. What is the 
purpose of increasing the accuracy of 1 a0 estimates? Small improvements in this mea­
sure are of relatively little importance for the life table (e.g., for the calculation of e0); 
especially at low levels of mortality, the contribution of person-years lived by those 
who die within the first year of life to total person-years lived is very small, and the 
fact that a different 1 a0 formula adjusts their modeled average length of life by mere 
days makes the effect smaller still. Nonetheless, accuracy is desirable, and besides 
illustrating an improvement in a purely statistical sense, we believe this model is an 
improvement because it is based on substantive reasoning rather than a mathematical 
function.

Furthermore, though it may not affect e0 and other life table summary measures, 
the age pattern of infant mortality itself matters. Our framework explains and elimi­
nates a portion of the previously unaccounted for variation in 1 a0 at low levels of mor­
tality and offers a new measure for differentiating between societies with very similar 
levels of infant mortality but different patterns. As an illustrative example, one soci­
ety at a given mortality level may have relatively low prematurity and a higher rate 
of deaths later in infancy from external causes, while another has high prematurity 
and fewer deaths later in infancy. The implications of these two patterns of death for 
public health policy and population well-being are very different.

The effectiveness of using the ratio of infant to under-five mortality as a proxy for 
prematurity in this application is also an important finding and suggests a possible 
avenue for exploring an important phenomenon for which we have very little data. It 
also suggests that with more data on premature birth, 1 a0 could be modeled with even 
greater accuracy.

A major limitation of this study is the restriction of the analysis to low-mortality 
contexts. The data and model estimation presented considered populations with infant 
mortality rates of less than 80 per 1,000, as data from HMD are largely limited to low-
mortality populations. While it is likely that prematurity has the largest effect in popu­
lations with advanced medical systems—a requirement for the survival of premature 
infants—its effect in moderate- and high-mortality contexts could also be important 
and remains unknown. Future work could explore the relationship among 1 a0, infant 
mortality, and the ratio of infant to under-five mortality in a range of different mortal­
ity contexts, using, for example, data from Demographic and Health Surveys as well 
as child mortality estimates from the United Nations Inter-agency Group on Mortality 
Estimation. ■
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