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ABSTRACT  We revisit a novel causal model published in Demography by Hicks et al. 
(2018), designed to assess whether exposure to neighborhood disadvantage over time 
affects children’s reading and math skills. Here, we provide corrected and new results. 
Reconsideration of the model in the original article raised concerns about bias due to 
exposure-induced confounding (i.e., past exposures directly affecting future exposures) 
and true state dependence (i.e., past exposures affecting confounders of future expo
sures). Through simulation, we show that our originally proposed propensity function 
approach displays modest bias due to exposure-induced confounding but no bias from 
true state dependence. We suggest a correction based on residualized values and show 
that this new approach corrects for the observed bias. We contrast this revised method 
with other causal modeling approaches using simulation. Finally, we reproduce the 
substantive models from Hicks et al. (2018) using the new residuals-based adjustment 
pro­ce­dure. With the cor­rec­tion, our find­ings are es­sen­tially iden­ti­cal to those reported 
originally. We end with some conclusions regarding approaches to causal modeling.

KEYWORDS  Propensity function models  •  Child development  •  Neighborhood effects

Introduction

In this note, we revisit the novel causal model in our article previously published in 
Demography (Hicks et al. 2018) in order to reassess the proposed method and pro
vide corrected and new results. We begin with an overview of the original article, its 
meth­od, and main find­ings. We then ad­dress some meth­od­o­log­i­cal con­cerns re­gard­
ing exposure-induced confounding and true state dependence and provide new sim
ulation results and a revised modeling approach. Our discussion focuses on broader 
issues associated with estimating causal effects and includes a set of updated and new 
substantive results on the effects of neighborhood exposures on children’s acquisition 
of skills. We end with conclusions related to methodology and our substantive results.

Results from Hicks et al. (2018)

Our prior article (Hicks et al. 2018), henceforth referred to as HHSP, considered whether 
exposure to neighborhood disadvantage over time affects children’s reading and math 
skills. The central substantive concern is that because children’s exposure to disad
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774 M. S. Handcock et al.

vantaged neighborhoods during childhood is not uniform, the duration and timing of 
exposure could have important effects on the acquisition of foundational skills during 
childhood that shape outcomes later in the life course. The endogeneity of neighborhood 
exposures is a key methodological issue in this literature, and the analysis in HHSP built 
on previous studies (Sampson et al. 2008; Wodtke et al. 2011) that tackled this issue using 
marginal structural models with inverse probability of treatment weighting (IPTW).

The methodological contribution of our study was the development and application 
of a new statistical approach that, we argued, overcame certain limitations and disad
vantages of IPTW models. A principal advantage of the HHSP approach was modeling 
the effects of cumulative neighborhood exposures as a continuous treatment variable 
using a propensity function (PF; Imai and van Dyk 2004). The analysis drew on data 
from the Los Angeles Family and Neighborhood Survey (L.A.FANS; Sastry et  al. 
2006). We iden­ti­fied ef­fects of two dis­tinct di­men­sions of ex­po­sure, cor­re­spond­ing to 
(1) an average treatment effect of living in a disadvantaged neighborhood, and (2) an 
effect of the recency of this exposure (i.e., how recently a child lived in a disadvantaged 
neighborhood).

Using the PF ap­proach, we found a neg­a­tive al­beit not sta­tis­ti­cally sig­nifi­cant ef­fect 
of average exposure to neighborhood disadvantage on reading scores but no effect on 
math scores. We also found that children with more recent exposure to neighborhood 
dis­ad­van­tage had sig­nifi­cantly lower read­ing and math scores. Although the ar­ti­cle 
was critical of the IPTW approach used by Wodtke et al. (2011), it also implemented 
Wodtke et  al.’s ap­proach with the L.A.FANS data in or­der to con­trast the find­ings 
of the new PF method with this existing method. We found that the IPTW and PF 
results were similar regarding the negative effects of recency of exposure on reading 
scores but not math scores. Using the IPTW approach, we also found negative effects 
of average exposure to neighborhood disadvantage on both math and reading scores, 
al­though the lat­ter ef­fect was sta­tis­ti­cally sig­nifi­cant only at the .10 lev­el. Because the 
IPTW find­ings were lim­ited by meth­od­o­log­i­cal con­straints and the data re­quire­ments 
of that approach, we were unable to estimate models with nonlinear effects or while 
simultaneously including measures of both average exposure and recency of exposure 
to neighborhood disadvantage. A main substantive implication of our results was that 
reducing exposure to neighborhood disadvantage over the course of childhood would 
yield ben­e­fi­cial ef­fects for chil­dren’s achieve­ment out­comes, par­tic­u­larly for youn­ger 
children.

Assessment and Revision of Statistical Methods From Hicks et al. (2018)

The iden­ti­fi­ca­tion of causal ef­fects from ob­ser­va­tional stud­ies relies on strong and 
untestable assumptions about the nature of social processes and our measurement of 
them. Statistical methods to estimate causal effects are based on two components: (1) 
a model for the outcomes based on covariates that characterize potential exposures, 
and (2) a model for the selectivity of the potential exposures based on the covariates. 
Selectivity processes are complex and generally are poorly understood by theory. 
Most classroom descriptions of causal analysis focus on idealized illustrations that 
are far from the real world of demographic research. Even when the exposure is 
determined prior to outcomes, confounding by unmeasured baseline covariates or 
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775Note on “Sequential Neighborhood Effects”

misspecificat­ion of the model for the re­la­tion­ship among the covariates, ex­po­sure, 
and the outcome can lead to poor estimates of causal effects.

The primary concern in studies of type we conducted in our previous article (HHSP) 
is bias due to exposure-induced confounding (i.e., that past exposures directly affect 
future exposures) and true state dependence (i.e., that past exposures affect confound
ers of future exposures). In HHSP, addressing these two concerns centered on the rep
resentation of time-varying exposures (i.e., to disadvantaged and nondisadvantaged 
neighborhoods) and time-varying covariates (e.g., family income). Time-varying 
covariates lead to biased estimates in the presence of dynamic selection because these 
variables may be colliders and thus lead to spurious associations, or they may lie on 
the causal pathway and hence represent inappropriate controls.

We use the following notation. Let j = 0 correspond to baseline so that the baseline 
covariates for child i are represented by X0,i. Let Xj ,i = (X0,i , . . . , X j ,i ) be the history 
of the covariates up to and including j. Similarly, let Tj ,i = (T1,i , . . . ,Tj ,i) be the history 
of the exposure up to and including j. Let x j and tj be realized values of Xj ,i and Tj ,i, 
respectively. The method in HHSP assumes sequential ignorability:

	 P(Tj ,i|Y(t), Tj−1,i = tj−1, Xj ,i = x j ) = P(Tj ,i |Tj−1,i = tj−1,Xj ,i = x j ) ∀j, tj−1,x j . 	 (1)

According to this equation, the exposure of child i at time t is exogenous given the 
time-varying exposure and covariate history of the same child up to time t. In simple 
language, this assumes no unmeasured confounding at each time point. There may be 
confounding by measured covariates but no confounding by unmeasured covariates. 
This is a standard assumption used in the modeling of dynamic selection (Robins 
1999; Wodtke 2018). Equation (1) was not stated explicitly in HHSP, which may 
have led to con­fu­sion. Because of this as­sump­tion, the PF method al­lows for true state 
dependence and does not suffer from true state dependence bias. The PF model is

P(Ti |X0,i ) =
j=1

6

∏P(Tj ,i |Tj−1,i = tj−1,Xj ,i = x j ).

Table 1  Performance of Hicks et al.’s (2018) PF approach and linear regression when estimating 
the cumulative effect of a time-varying exposure (simulations based on 10,000 replications)

Type of Dynamic Selection PF Approach Linear Regression

True State 
Dependence 
(T1 → T2)

Exposure-Induced 
Confounding 
(T1 → X2) Bias RMSE Bias RMSE

No No −0.0002 0.061 −0.0001 0.061
Yes No −0.0004 0.056 −0.0004 0.055
No Yes 0.0561 0.084 0.0561 0.083
Yes Yes 0.0559 0.078 0.0558 0.078

Notes: RMSE = the root mean squared er­ror. The cu­mu­la­tive ef­fect is de­fined here as the av­er­age mar­ginal 
effect of a unit increase in the exposure at each time point. The Monte Carlo standard errors on the biases 
are each about 0.0006.
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776 M. S. Handcock et al.

In Table 1, we present simulation results to show the performance of the PF method 
and of linear regression under true state dependence bias and exposure-induced 
confounding (i.e., Tj−1→ X j). Our find­ings show that the PF method is un­bi­ased 
and ef­fi­cient un­der true state de­pen­dence, as is Linear Re­gres­sion. However, the PF 
method displays modest bias (as does linear regression) due to the impact of T1 on X2; 
this bias should be addressed.

Nothing in the PF method precludes addressing this bias through an appropriate 
adjustment. In particular, it is natural to adjust for exposure-induced confounding by 
appropriately residualizing the time-varying covariates at each period and using the 
residualized values in place of the covariates in the corresponding models. Indeed, 
the regression-with-residuals (RWR) method that was recently advocated in the liter
ature uses this approach (Almirall et al. 2010; Wodtke 2018; Wodtke et al. 2020). We 
adopted a mod­i­fi­ca­tion to the PF ap­proach us­ing re­sid­u­als and un­der­took a set of sim­u­
lations to compare this approach with IPTW, standard RWR, and g-estimation (Naimi 
et al. 2017; Robins et al. 1994; Vansteelandt and Sjolander 2016). The simulation 
results, presented in Table 2, show that the mod­i­fied PF method with an ad­just­ment 
using residuals does not suffer from true state dependence bias or exposure-induced 
confounding. It performs as well as the other methods shown.

Each of the four methods—PF, RWR, g-estimation, and IPTW—is based on the 
following fundamental identity:

P(Y(t)| X0 = x0 ) = P(Y(T )|T = t,X0 = x0 )
= ∫ P(Y(T )|T = t,X = x )P(X = x |T = t,X0 = x0 )dx .

The first term in the in­te­gral is the model for the po­ten­tial out­come dis­tri­bu­tion given 
the potential exposure regime t and potential covariate regime x . This term describes 
how the potential outcomes change with the potential exposures and covariates. The 
second term in the integral is the model for the time-varying covariates given the 
potential exposure regime t. Both terms are un­known, both in form and pa­ram­e­ters, 

Table 2  Performance of alternative methods when estimating the cumulative effect of a time-varying 
exposure (simulations based on 10,000 replications)

Type of Dynamic Selection IPTW RWR g-Estimation Modified PF

True State 
Dependence 
(T1 → T2)

Exposure-Induced  
Confounding 
(T1 → X2) Bias RMSE Bias RMSE Bias RMSE Bias RMSE

No No −0.001 0.068 0.000 0.062 0.000 0.062 0.000 0.063
Yes No −0.001 0.061 −0.000 0.056 −0.000 0.056 −0.001 0.057
No Yes −0.002 0.066 −0.000 0.061 −0.000 0.061 −0.000 0.061
Yes Yes −0.000 0.061 0.001 0.055 0.001 0.055 0.001 0.056

Notes: IPTW = inverse probability of treatment weighting; RWR = re­gres­sion-with-re­sid­u­als; mod­i­fied PF = the 
propensity function approach with an adjustment using residuals; and RMSE = the root mean squared error. 
The cu­mu­la­tive ef­fect is de­fined here as the av­er­age mar­ginal ef­fect of a unit in­crease in the ex­po­sure at each 
time point. The Monte Carlo standard errors on the biases are each about 0.0006.
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777Note on “Sequential Neighborhood Effects”

and need to be estimated. The covariate model is represented sequentially, using the 
sequential ignorability assumption.

The identity produces the so-called g(eneral)-computation formula:

E(Y(T )|T = t,X0 = x0 ) = ∫ E(Y(T )|T = t, X = x )P(X = x |T = t,X0 = x0 )dx ,

The PF method is based on modeling the propensity function P(T = t|X0 = x0 )
by assuming that it depends on X0   only through some function θψ (X0 )—that is, 
θψ(x1) = θψ (x2 ) implies that P(T = t|X0 = x1) = P(T = t|X0 = x2 ). This also means that 
ex­po­sure se­lec­tion is ran­dom within each sub­pop­u­la­tion de­fined by lev­els of θψ (X0 ):

P(Y (T )|T = t,θψ (X0 )) = P(Y (T )|θψ (X0 )),

so that the g(eneral)-computation formula can be replaced by

E(Y(t)|X0 = x0 ) = E(Y(T )|T = t,X0 = x0 )
= ∫ E(Y(T )|T = t,θψ (X0 ) = s)P(θψ (X0 ) = s)ds,

as in HHSP. The IPTW method is based on the following identity (Zhang et al. 2016):

ET
P(T = t)(Y − E(Y (t)|X0 = x0 ))

P(T = t|X0 = x0 )
|T⎡

⎣
⎢

⎤

⎦
⎥ = 0,

which also features the PF. The IPTW estimate of E(Y(t)|X0 = x0 )  is chosen to solve this 

equation. This requires a model for E(Y (t)|X0 = x0 ) and 
P(T = t)(Y − E(Y (t)|X0 = x0 ))

P(T = t|X0 = x0 )
, 

the latter being the IPTW weights. A natural way to estimate the parameters in the 
model is to regress the observed outcomes on the exposures while weighting each 
child by the inverse of the PF.

The IPTW and PF methods use the propensity function in different ways. IPTW 
tries to represent the potential outcome for the population by reweighting the sam
ple. The PF method uses a model, θψ (X0 ), that represents the population but may be 
misspecified. The g-estimation method differs in modeling the outcome conditional 
on the time-varying covariates, whereas the other methods model the outcome uncon
ditionally or marginally on the time-varying covariates. The effect of the exposure at 
time t is allowed to change with different past exposure and covariate histories. This 
fea­ture is a strength, but it re­quires these com­plex mod­els to be cor­rectly spec­i­fied. 
The RWR method makes an additional assumption that the effect of the exposure at 
time t is not allowed to change with different past covariate histories. Adjusted time-
varying covariates are computed by residualizing them against prior exposures and 
covariates, which in principle should remove the dependence on prior exposures. 
These adjusted time-varying covariates are then used in place of the original variables 
in the outcome model. Under these assumptions, modeling the PF can be avoided and 
unweighted regression models can be used. We use a similar residualization approach 
in the PF method, but we still use the propensity function.
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Discussion

We now turn to the broader question of estimating causal effects in observational 
studies in the presence of dynamic selection, as manifested by time-varying expo
sures and covariates.

Convincing modeling approaches depend on a balance between the strength of 
model assumptions (including consistency, sequential ignorability, and positivity) 
and the quality of the data. Standard methods for causal inference assume that an 
observational study can be treated as if it were a sequentially randomized experiment 
in which the randomization probabilities at each time depend on past exposure and 
the measured covariate history but not additionally on unmeasured covariates. It is 
possible that these assumptions exactly hold for idealized randomized experiments 
with full compliance (Robins and Hernán 2009). However, these are heroic assump
tions for re­al-world ob­ser­va­tional re­search in de­mog­ra­phy or any other field.

The sensitivity of these methods to minor variations in the circumstances of the 
demonstration is well known. For example, in the real world, the IPTW weights are 
unknown and must be estimated. Modest errors in estimating low-probability expo
sures lead to large er­rors in the es­ti­ma­tion of the causal ef­fects (in­ef­fi­cien­cy), and 
model misspecification can lead to bias (Wodtke 2018). The simulation results assume 
that the mod­els are cor­rectly spec­i­fied, and the per­for­mance of these meth­ods de­clines 
quickly with minor violations of this assumption. In particular, the performance of 
the IPTW model noticeably declines if the use of the (exact) Gaussian distributional 
assumption is replaced by the use of t distributions. Similarly, the performance of the 
RWR and g-estimation methods can be arbitrarily poor if the outcome model is qua
dratic in the average treatment effect, whereas the PF method automatically adjusts for 
this. This is not to argue that the PF method is superior to other methods, but rather 
that the performance of the methods depends on the application. Differences between 
the methods will likely be smaller than differences due to the selection of variables to 
include, the representation of their causal relationships, and other related modeling 
choices.

Because the sim­u­la­tion re­sults suggested that HHSP’s orig­i­nal re­sult may have been 
affected by exposure-induced confounding, we replicated the full modeling process 
presented in HHSP with and without the residuals-based adjustment procedure. We 
reran the original models to incorporate a correction for a minor programming error. 
For the adjusted model, we residualized the time-varying covariates at each period (as 
the difference between observed and predicated values) based on a model using the 
prior ex­po­sure and covariates, which mir­rors the spec­i­fi­ca­tion of the ex­po­sure mod­els.

The results are presented in Tables 3 and 4, respectively, for the models with and 
without the residuals-based adjustment procedure. Figure 1 shows the main find­ings 
for the effects of expected neighborhood disadvantage and average expected recency 
of exposure to neighborhood disadvantage on reading and math scores for both model 
spec­i­fi­ca­tions, with the four pan­els mirroring the par­al­lel fig­ure in HHSP (Hicks et al. 
2018: fig­ure 2). The (un­ad­just­ed) orig­i­nal re­sults are shown in black; the new, ad­
justed models are shown in green. The dashed lines, in black and green, show the 
re­spec­tive 95% pointwise con­fi­dence bounds for the expected test score.

The results in Table 3 from the four reproduced original models (corresponding to 
separate models for neighborhood exposure and recency for both math and reading) 
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779Note on “Sequential Neighborhood Effects”

Table 3  Regression model results for effects of neighborhood disadvantage mean exposure and recency 
of exposure on reading and math scores without the residuals-based adjustment procedure

Math Reading

Exposure Recency Exposure Recency

Child’s Age at Baseline −1.462** −1.320** −0.833** −0.829**
(0.287) (0.285) (0.313) (0.312)

Child Is Male (ref. = female) 1.499 1.650 −1.765 −1.724
(1.405) (1.401) (1.540) (1.537)

Child’s Race: Black (ref. = Latino) −0.699 −0.540 0.576 0.132
(2.303) (2.294) (2.542) (2.519)

Child’s Race: White or Other (ref. = Latino) −0.413 −0.804 6.295† 5.694
(3.450) (3.453) (3.800) (3.762)

Child Low Birth Weight (ref. = normal birth weight) 0.343 0.409 2.256 2.279
(2.991) (2.974) (3.296) (3.291)

Mother’s Age at Child’s Birth 0.128 0.114 0.279* 0.277*
(0.128) (0.127) (0.140) (0.140)

Mother Married at Child’s Birth (ref. = not married) −0.291 0.269 0.481 0.442
(2.148) (2.137) (2.193) (2.182)

Mother’s Reading Achievement Score 0.121* 0.120* 0.182** 0.187**
(0.051) (0.052) (0.057) (0.057)

Family Head Is High School Graduate (ref. = not high 
school graduate) 2.959 3.036 8.365** 8.025**

(1.904) (1.902) (2.069) (2.053)
Family Owns Home (ref. = does not own) 0.614 0.044 −1.216 −1.518

(1.663) (1.689) (1.829) (1.824)
Baseline: Mother Was Married (ref. = not married) 1.677 1.398 −0.474 −0.132

(2.082) (2.091) (2.206) (2.200)
Baseline: Mother’s Number of Children 0.240 0.289 0.703 0.729

(0.796) (0.797) (0.875) (0.872)
Baseline: Mother Was Employed (ref. = not employed) 0.230 0.002 0.079 0.086

(1.504) (1.516) (1.574) (1.575)
Baseline: Mother’s Hours of Work 0.064 0.065 −0.022 −0.025

(0.055) (0.055) (0.057) (0.056)
Baseline: Receiving Public Assistance (ref. = no receipt) −1.317 2.235 −0.853 −0.596

(4.091) (4.207) (4.128) (4.090)
Baseline: Family Income (log $) −0.078 −0.119 0.003 0.003

(0.268) (0.272) (0.299) (0.297)
Constant 95.458** 94.838** 86.123** 86.181**

(7.284) (7.296) (8.071) (7.966)

†p < .10; *p < .05; **p < .01

are essentially identical to those reported in HHSP (Hicks et al. 2018: table 5).1 And 
the results in Table 4 for a parallel set of new models that incorporate the residuals-
based adjustment procedure are very similar to the unadjusted results, with only a few 
mi­nor dif­fer­ences that are not sub­stan­tively sig­nifi­cant.

The results for the new adjusted models in Figure 1 re­veal two sets of find­ings. 
First, we again find no ev­i­dence for sys­tem­atic ef­fects of the av­er­age ex­po­sure to 
neighborhood disadvantage on children’s math or reading scores, and the original and 

1  There was a small programming error in the original Table 5 of HSSP that affected the standard errors.
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780 M. S. Handcock et al.

Table 4  Regression model results for effects of neighborhood disadvantage mean exposure and recency 
of exposure on reading and math scores with the residuals-based adjustment procedure

Math Reading

Child’s Age at Baseline −1.435** −1.355** −0.815* −0.755*
(0.293) (0.292) (0.316) (0.314)

Child Is Male (ref. = female) 1.475 1.640 −1.637 −1.485
(1.429) (1.424) (1.548) (1.543)

Child’s Race: Black (ref. = Latino) −1.414 −1.093 −0.031 −0.249
(2.339) (2.343) (2.542) (2.530)

Child’s Race: White or Other (ref. = Latino) −2.316 −2.110 4.444 4.446
(3.434) (3.467) (3.749) (3.768)

Child Low Birth Weight (ref. = normal birth weight) 0.663 0.548 2.513 2.707
(3.042) (3.037) (3.306) (3.290)

Mother’s Age at Child’s Birth 0.119 0.097 0.245† 0.217
(0.131) (0.130) (0.141) (0.141)

Mother Married at Child’s Birth (ref. = not married) −0.276 0.199 0.869 0.914
(2.157) (2.140) (2.193) (2.175)

Mother’s Reading Achievement Score 0.104* 0.096† 0.190** 0.180**
(0.052) (0.052) (0.057) (0.057)

Family Head Is High School Graduate (ref. = not high 
school graduate) 3.481† 4.106* 8.503** 8.382**

(1.893) (1.907) (2.036) (2.051)
Family Owns Home (ref. = does not own) 0.618 −0.098 −1.363 −1.479

(1.683) (1.715) (1.833) (1.836)
Baseline: Mother Was Married (ref. = not married) 2.941 2.930 0.153 0.380

(2.079) (2.108) (2.209) (2.222)
Baseline: Mother’s Number of Children −0.102 0.246 0.813 0.815

(0.805) (0.811) (0.875) (0.879)
Baseline: Mother Was Employed (ref. = not employed) 1.012 0.986 0.403 0.579

(1.532) (1.592) (1.581) (1.595)
Baseline: Mother’s Hours of Work 0.041 0.036 −0.031 −0.035

(0.056) (0.056) (0.057) (0.057)
Baseline: Receiving Public Assistance (ref. = no receipt) 4.277 4.589 −1.441 −0.950

(3.709) (3.742) (3.971) (4.059)
Baseline: Family Income (log $) −0.051 −0.037 0.025 0.013

(0.278) (0.283) (0.294) (0.296)
Constant 96.359** 95.508** 85.562** 86.618**

(7.416) (7.450) (8.052) (7.977)

†p < .10; *p < .05; **p < .01

the new adjusted model results overlap substantially. Second, there is clear evidence 
of a sta­tis­ti­cally sig­nifi­cant neg­a­tive ef­fect of re­cency of ex­po­sure to neigh­bor­hood 
disadvantage on both sets of scores. The estimated functions in the original and the 
new ad­justed mod­els are vir­tu­ally iden­ti­cal, as are the con­fi­dence bounds.

Conclusions

We draw four conclusions from this brief analysis.
First, our original version of a novel propensity function–based approach to mod

eling causal effects in the presence of dynamic selection suffered from modest bias 
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781Note on “Sequential Neighborhood Effects”

due to exposure-induced confounding. We show that a simple correction using resid-
ualized values eliminates this bias. Our results also show that the HHSP model is 
un­bi­ased and ef­fi­cient un­der true state de­pen­dence.

Second, we investigated how the PF method performs relative to alternative mod
eling approaches to address dynamic selection: RWR, g-estimation, and IPTW. All 
four methods perform similarly in our simple simulation. The underlying reasons for 
this find­ing are that all­ four mod­els ex­am­ine the ef­fects of po­ten­tial ex­po­sures and 
that the models underlying these potential exposures are broadly similar. However, 
in more complicated real-world applications, the relative performance of these meth
ods may dif­fer be­cause of sig­nifi­cant var­i­a­tion in their mod­el­ing re­quire­ments. For 
instance, IPTW requires the creation of complex weights that are not always well 
behaved. For analyses with continuous treatments in which nonlinear effects may 
be present, the PF approach has clear strengths compared with the other methods 
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Fig. 1  Estimated adjusted effects of average expected neighborhood disadvantage and average expected 
recency of exposure to neighborhood disadvantage on reading and math scores. DRF = dose-response 
function. The (unadjusted) original results are shown in black; the new, adjusted models are shown in 
green. The dashed lines, in black and green, show the respective 95% pointwise confidence bounds for the 
expected test score.
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and has no obvious relative shortcomings. Other, newer statistical methods adjust for 
dynamic selection, such as the sequential weighting framework of Yiu and Su (2018), 
pointing to the likelihood of future development of these types of methods and their 
promise for demographic research applications.

Third, given that a variety of credible methods can be used to estimate causal ef
fects in the presence of dynamic selection, researchers should be aware of the advan
tages and dis­ad­van­tages of each method and choose the one that best fits both the 
data and the research questions. The PF approach has a number of characteristics 
that make it a useful tool when modeling causal effects. It can be extended to adjust 
for exposure-induced confounding by residualizing time-varying covariates at each 
pe­ri­od. It has a flex­i­ble func­tional form that al­lows non­lin­ear spec­i­fi­ca­tions of treat­
ment effects. It also allows for continuous treatments, which provide a more realistic 
characterization of exposure. Further, it permits researchers to examine the effects of 
multiple continuous treatment variables simultaneously. And, lastly, it allows for the 
spec­i­fi­ca­tion of a mul­ti­di­men­sional in­ter­ac­tion ef­fect be­tween the PF and the treat­
ment variables.

An alternative to choosing a single method would be to apply all available statisti
cal methods for causal analysis and preform a sensitivity analysis by comparing and 
contrasting the results. The overall analysis is more credible if the qualitative results 
for the methods agree. Insights can be gained by pinpointing where the methods 
disagree.

Fourth, we show that HHSP’s results, when corrected for exposure-induced con-
founding, continue to show the importance of the effects of recency of exposure to 
neighborhood disadvantage on children’s reading and math scores. In particular, the 
find­ings re­in­force the im­por­tance of pol­i­cies to im­prove neigh­bor­hood ex­po­sures—
particularly among younger children—as a means to enhance children’s acquisition 
of academic skills, which are in turn known to be associated with positive subsequent 
life course tra­jec­to­ries. ■
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