
Demography (2021) 58(2):499–526
DOI 10.1215/00703370-8977484  © 2021 The Authors
This is an open access article distributed under the terms of a Creative Commons license (CC BY-NC-ND 4.0).

Published online: 10 February 2021

ELECTRONIC SUPPLEMENTARY MATERIAL  The online version of this article (https:​/​/doi​.org​/10​.1215​/00703370​
-8977484) contains supplementary material.

Exploring Strategies for Investigating the Mechanisms 
Linking Climate and Individual-Level Child Health Outcomes: 
An Analysis of Birth Weight in Mali

Kathryn Grace, Andrew Verdin, Audrey Dorélien, Frank Davenport,  
Chris Funk, and Greg Husak

ABSTRACT  The goal of this article is to consider data solutions to investigate the dif­
ferential pathways that connect climate/weather variability to child health outcomes. 
We apply several measures capturing different aspects of climate/weather variability to 
different time periods of in utero exposure. The measures are designed to capture the 
complexities of climate-related risks and isolate their impacts based on the timing and 
du­ra­tion of ex­po­sure. Specifically, we fo­cus on in­fant birth weight in Mali and con­sider 
local weather and environmental conditions associated with the three most frequently 
pos­ited po­ten­tial driv­ers of ad­verse health out­comes: disease (malaria), heat stress, and 
food insecurity. We fo­cus this study on Mali, where sea­sonal trends fa­cil­i­tate the use of 
mea­sures spe­cifi­cally designed to cap­ture dis­tinct as­pects of cli­ma­te/weather con­di­tions 
relevant to the potential drivers. Results indicate that attention to the timing of exposures 
and employing measures designed to capture nuances in each of the drivers provides 
im­por­tant in­sight into cli­mate and birth weight out­comes, es­pe­cially in the case of fac­
tors impacted by precipitation. Results also indicate that high temperatures and low 
lev­els of ag­ri­cul­tural pro­duc­tion are con­sis­tently as­so­ci­ated with lower birth weights, 
and exposure to malarious conditions may increase likelihood of nonlive birth outcomes.

KEYWORDS  Birth weight  •  Climate  •  Environmental exposures  •  Child health 
•  Remote sensing

Introduction

Warming and drying represent one of the most direct impacts of climate change on 
humans. Communities reliant on rainfed agriculture to meet their food and nutrition 
needs are at high risk for negative health and economic outcomes associated with cli­
mate change (Brown et al. 2015; IPCC et al. 2013). In ru­ral Sahelian Africa, where 
in­con­sis­tent rain­fall may re­sult in droughts or flooding events and where tem­per­a­tures 
can spike to ex­tremely high lev­els, sub­sis­tence com­mu­ni­ties face no­ta­ble ag­ri­cul­tur­al, 
health, and live­li­hood chal­lenges as­so­ci­ated with cli­mate change (Davenport et  al. 
2017; Grace et al. 2015). In these con­texts and for these com­mu­ni­ties, sea­sonal rain­fall 
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is vital for producing the food needed to meet the family’s nutritional and caloric de­
mands. Inadequate rains con­strain house­hold food pro­duc­tion, put­ting the health and 
security of families at risk. High temperatures can impact agricultural yields (in differ­
ent ways, depending on the set­ting and the pre­cip­i­ta­tion), or they can cause heat waves 
that lead to heat stress and as­so­ci­ated ad­verse health out­comes (Muller et al. 2011; 
Strand et al. 2011). Warm temperatures and wet conditions can also create an ideal 
setting for malaria transmission (Kudamatsu et al. 2016; Tanser et al. 2003). Conse­
quently, a rainy, warm sea­son that may seem pos­i­tive for ag­ri­cul­tural pro­duc­tion may 
result in increased exposure to disease or an increased risk of exposure to heat stress.

Because of these complexities, re­search ex­plor­ing the ef­fects of cli­mate on mal­nu­
trition often struggles to isolate and identify the mechanisms underlying the relation­
ship be­tween a cli­mate mea­sure and a health out­come. In other words, it is dif­fi­cult to 
explain why the relationship between seasonal rainfall totals and a measure of malnu­
tri­tion, for ex­am­ple, is neg­a­tive in some cases and pos­i­tive in oth­ers (Bakhtsiyarava 
et al. 2018; Davenport et al. 2017; Grace et al. 2012). Similarly, high tem­per­a­tures are 
gen­er­ally as­sumed to have a neg­a­tive im­pact on health out­comes, but re­search in­ves­
ti­gat­ing tem­per­a­ture con­di­tions and health out­comes has been in­con­sis­tent, show­ing 
both pos­i­tive as­so­ci­a­tions and non­sig­nifi­cant as­so­ci­a­tions us­ing vary­ing met­rics (Xu 
et al. 2012; Zhang et al. 2017).

Our goal here is to consider exposure timing to examine the differential pathways that 
con­nect cli­ma­te/weather var­i­abil­ity to child health. To this end, we use cli­mate in­di­ca­tors 
designed to capture the complexities of different climate-related risks and isolate their 
im­pacts based the tim­ing and du­ra­tion of ex­po­sure. Specifically, we fo­cus on in­di­vid­u­al-
level infant birth weight with attention to local seasonal weather conditions associated 
with the three most frequently posited potential drivers of adverse health outcomes: 
disease (malaria), heat stress, and food insecurity. The ap­proach used here ex­ploits highly 
spatially and temporally detailed data to examine exposure conditions and isolate differ­
ent environmental factors associated with child health. This project therefore advances 
spatial and environmental demography because it combines a diverse set of climate and 
health data capable of capturing a range of factors of importance to child health.1

We fo­cus on Mali, where the vast ma­jor­ity of in­di­vid­u­als are de­pen­dent on rainfed 
agriculture and where malaria is endemic (WHO 2017). Additionally, Mali’s sea­
sonal var­i­abil­i­ty—a hot, dry sea­son and a sin­gle rainy, warm, and short grow­ing 
sea­son—fa­cil­i­tates the tem­po­ral iso­la­tion of spe­cific types of cli­ma­te-re­lated ex­po­
sures (see Figure 1).

To con­duct our anal­y­sis, we in­cor­po­rate three mea­sures of cli­mate con­di­tions that 
are designed to cap­ture the spe­cific po­ten­tial path­ways of in­ter­est: dis­ease, heat stress, 
and food in­se­cu­ri­ty. These mea­sures re­flect the spa­tial and tem­po­ral complexities of 
each of the three pathways and are derived from related research. We modify the mea­
sures somewhat from their original development to accommodate the available data 
as well as to ac­count for the tem­po­ral and geo­graphic as­pects of the Malian con­text. 
We match each indicator to individual birth weights to investigate how exposure to 
spe­cific con­di­tions dur­ing preg­nancy im­pacts health out­comes.

1  A range of health outcomes could be evaluated using the approaches we describe here as long as the 
pathways and exposure periods were properly matched.

D
ow

nloaded from
 http://dup.silverchair.com

/dem
ography/article-pdf/58/2/499/909832/499grace.pdf by guest on 23 April 2024



501An Analysis of Birth Weight in Mali

 Data on in­di­vid­u­al-level birth weights come from mul­ti­ple pe­ri­ods (2000, 2006, 
and 2012) of the spa­tially ref­er­enced Malian Demographic and Health Survey (DHS). 
These data are merged with the spatially and temporally varying climate measures 
based on the location and timing of individual exposures.

Background

Climate and Weather and Children’s Health Outcomes

In this ar­ti­cle, we fo­cus on one child health out­come: birth weight. Birth weight is 
one of several commonly investigated anthropometric measures of child health (other 
frequently considered measures are height-for-age and weight-for-age) used to assess 
overall health of individuals and of a population. Understanding risk factors associ­
ated with birth weight variation or low birth weight (when an infant weighs less than 
2,500 grams at birth) may also help to iden­tify chil­dren at greatest risk for mor­bid­ity 
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Fig. 1  Mali climatology from 1981–2016 (averaged over DHS clusters). The bolded line with dots rep­
resents daily maximum temperature averaged over the month. Finer line with diamonds represents daily 
minimum temperature averaged over the month. Bars represent average monthly precipitation totals. Tem­
perature data are obtained from the Global Meteorological Forcing data set (Sheffield et al. 2006). Precipi­
tation data are obtained from the Climate Hazards Infrared Precipitation with Stations (Funk et al. 2014b).
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and mortality (Black et al. 2008; Mosley and Chen 1984; Victora et al. 2008). Con­
ceptual frameworks useful for understanding and designing interventions to improve 
child health include birth weight as one of many factors of interest. As with other chil­
dren’s health out­comes, birth weight varies by in­di­vid­ual child according to bi­o­log­i­cal 
variations and a wide range of environmental conditions experienced during key peri­
ods (in this case, preg­nan­cy) (Black et al. 2008; Kramer 1987, 2003). Although child 
health and de­vel­op­ment frame­works dif­fer in some ways, the gen­eral struc­ture is that 
broad fac­tors re­lat­ing to pol­i­tics, the econ­o­my, and (more re­cent­ly) cli­ma­te/weather 
lead to more lo­cal re­gion–spe­cific fac­tors; these in turn impact house­hold/in­di­vid­ual 
fac­tors, which then impact bi­o­log­i­cal re­sponses and fi­nally the health out­come (see 
Grace 2017; Kramer 2003; Mosley and Chen 1984; UNICEF 1991, 2017). In prac­tice, 
applying these kinds of frameworks implies that broad-level shocks will have differ­
en­tial im­pacts on birth weight (or other health out­comes) depending on, for ex­am­ple, 
the socioeconomic status of a household or an individual’s educational attainment or 
prenatal care history.

In de­mo­graphic and so­cial sci­ence re­search, cli­mate and weather are con­cep­tu­
alized more broadly as environmental or contextual factors (Kramer 2003; Mosley 
and Chen 1984; UNICEF 2017). As interdisciplinary research on the climate-health 
re­la­tion­ship has ex­pand­ed, the data and tools used to this re­la­tion­ship have resulted in 
some important shifts in the ways that researchers link climate/weather data to health 
da­ta. In ap­plied and in­ter­dis­ci­plin­ary re­search, cli­mate and weather fac­tors are of­ten 
more di­rectly tied to com­mu­ni­ty-, house­hold-, or in­di­vid­u­al-level re­sponses and are 
com­monly used to proxy fac­tors of in­ter­est re­lated to dis­ease, food se­cu­ri­ty, or cli­
mate shocks (Eissler et al. 2019; Sellers and Gray 2019). In fact, in a re­cent re­view of 
cli­mate and un­der­nu­tri­tion, Phalkey et al. (2015) reimagined the UNICEF framework 
to highlight the role of climate/weather factors2 at in­di­vid­ual and house­hold scales, 
noting “that a large proportion of the mediating factors are climate/weather sensitive” 
(p. E4526). In this anal­y­sis, we fo­cus on birth weight as an out­come var­i­able with 
established link­ages to pre­na­tal ex­po­sure to dis­ease, heat stress, and food se­cu­ri­ty. 
However, not­ing the con­nec­tion be­tween birth weight, child health, and mor­tal­i­ty, the 
ap­proach that we use here can eas­ily be ex­panded to in­ves­ti­gate as­so­ci­ated out­comes, 
such as in­fant mor­tal­i­ty, chronic or acute mal­nu­tri­tion, cog­ni­tive de­vel­op­ment, and 
related factors.

Using Climate and Weather Data to Estimate Exposure to Stressors

Research investigating the impacts of climate on early child health (including birth 
weight) in sub-Saharan Africa has pro­duced mixed re­sults (e.­g., Bakhtsiyarava et al. 
2018; Kudamatsu et al. 2016; see also Phalkey et al. 2015; Xu et al. 2012). Three fac­
tors may explain the nonconvergent results in climate and health studies: (1) the wide 
range of cli­mate data sources and cli­mate var­i­able defi­ni­tion; (2) the nu­anced and 

2  The framework proposed by Phalkey et al. (2015) fo­cused on food se­cu­ri­ty, the food sys­tem, in­fec­tious 
dis­ease, and the im­pact of these fac­tors over time and within house­holds.
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com­plex bi­o­log­i­cal re­sponse to cli­mate con­di­tions (or ex­tremes), in­clud­ing ac­cli­ma­ti­
za­tion; and, likely most im­por­tant­ly, (3) an in­di­vid­u­al’s so­cio­eco­nomic sta­tus, which 
impacts access to resources to alleviate negative health outcomes. Researchers have 
often focused on aggregate rainfall and temperature trends and have theorized that 
these climate measures impact health outcomes through various pathways—primarily 
disease (Kudamatsu et al. 2016), food in­se­cu­rity (Davenport et al. 2017), or heat stress 
(Asamoah et al. 2018; Phalkey et al. 2015; Xu et al. 2012). However, the link­ages 
be­tween cli­mate and health are com­plex and dif­fi­cult to de­tect us­ing ag­gre­gate cli­mate 
con­di­tions. For ex­am­ple, sea­sonal or an­nual to­tal pre­cip­i­ta­tion pro­vi­des lit­tle in­for­ma­
tion on lo­cal ag­ri­cul­tural yields, and an­nual av­er­age max­i­mum tem­per­a­ture pro­vi­des 
little information on heatwave frequency and duration.

Seasons when climate conditions are likely to increase the likelihood of malaria 
trans­mis­sion can be iden­ti­fied based on his­tor­i­cal norms, but monthly cli­mate data can 
help to re­fine the spa­tial and tem­po­ral de­tail allowing for var­i­abil­ity across years and 
over space. In other words, ag­gre­gate cli­mate con­di­tions do not al­ways ad­e­quately 
re­flect the with­in-sea­son var­i­abil­ity that drives neg­a­tive health out­comes. Applying 
measures that have been developed precisely to capture agricultural productivity and 
food avail­abil­i­ty, malaria con­di­tions, and heat waves to an­a­ly­ses of child health out­
comes as­so­ci­ated with mal­nu­tri­tion, malaria, and heat stress will help de­ci­pher the 
different pathways that link climate to adverse health outcomes. Our analyses focus 
on the three path­ways: malaria (dis­ease), food in­se­cu­ri­ty, and heat stress.

Malaria

Malaria likely in­creases the risk of still­birth and spon­ta­ne­ous abor­tion, but it 
also is linked to low birth weight, es­pe­cially in the case of first births in malaria- 
en­demic ar­eas (Desai et al. 2007; Kramer 2003; Kudamatsu et al. 2016; McFalls and 
McFalls 1984). Large-scale,3 spa­tially ref­er­enced, in­di­vid­u­al-level dis­ease his­to­ries 
are vir­tu­ally non-ex­is­tent for sub-Saharan Af­ri­can countries, mak­ing it im­pos­si­ble 
to in­ves­ti­gate an in­di­vid­u­al’s spe­cific health back­ground and their lat­er-life health. 
Aggregate measures of disease presence capturing a country’s disease experience 
are also non-ex­is­tent or in­suf­fi­cient be­cause highly de­tailed com­mu­ni­ty-level data 
on malaria cases or out­breaks are dif­fi­cult to come by. Ultimately, this lack of data 
leads researchers to develop alternative strategies for measuring the potential for 
malaria pres­ence in a given area dur­ing a given time frame. In some cases—normally, 
smaller-scale studies—researchers will identify the typical rainy season months as 
those with high malaria trans­mis­sion (e.­g., Berry et al. 2018). At small scales, this 
ap­proach may be used to cap­ture some shifts in yearly con­di­tions, but it would be 

3  Extensive sur­veil­lance data ex­ist for many sites across Africa and world­wide. Surveillance sys­tems (see, 
e.­g., In-Depth Data Repository; http:​/​/www​.indepth​-network​.org​/) are designed to follow individuals and 
reg­u­larly track dif­fer­ent key events, in­clud­ing dis­ease, births, and deaths. Unfortunately, data of this sort 
are geo­graph­i­cally lim­ited to spe­cific com­mu­ni­ties and can be chal­leng­ing to com­bine with oth­er, sim­i­lar 
sur­veys in dif­fer­ent places be­cause ques­tion­naires can vary great­ly. Furthermore, ac­cess to the in­di­vid­ual 
records dramatically varies across sites and over time.
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challenging to apply to a large sample of communities to compare outcomes over 
time and space. Some an­a­lysts, es­pe­cially in stud­ies with data span­ning many coun­
tries and years, use dif­fer­ent mea­sures of rain­fall or more so­phis­ti­cated com­pos­ite 
indicators that consider temperature trends and rainfall trends together.

In the case of the com­bined tem­per­a­ture and rain­fall in­dex, high-fre­quency cli­mate 
data are used to de­rive a malaria in­dex ca­pa­ble of iden­ti­fy­ing, over space and time, 
climate conditions that support the existence of the parasite and the vector needed to 
trans­mit malaria (for de­tails on the con­struc­tion and val­i­da­tion of the malaria in­dex, 
see Kudamatsu et al. 2016; Tanser et al. 2003). This more complex and physically 
based indicator is capable of capturing variation over time and space that coarser 
measures are not able to capture. This measure has been used to investigate patterns 
of infant mortality across sub-Saharan Africa (Kudamatsu et al. 2016). We use this 
composite climate-based measure to identify months and locations (with a spatial 
resolution of ∼5 kilometers) in which the parasite and vector are likely to be present 
and transmission rates are expected to be higher.

Table 1 pres­ents the cri­te­ria used to de­fine the bi­nary malaria in­dex. All cri­te­ria 
must be sat­is­fied for a lo­ca­tion (grid cell) to be con­sid­ered po­ten­tially malarious.

Food Insecurity

Food insecurity is associated with adverse health outcomes for pregnant and breast­
feeding women and their children. Food insecurity can lead to low birth weight 
when women are exposed during prepregnancy or early or later stages of pregnancy 
(Bloomfield et al. 2013; Kramer 2003). Other outcomes of food insecurity include 
low height-for-age (stunting) and low weight-for-age (wast­ing), among a wide range 
of other adverse health outcomes that can last into adulthood (many of which are 
associated with in utero exposures). A wide range of factors drive community- or 
house­hold-level food in­se­cu­ri­ty, with food avail­abil­ity fea­tur­ing prom­i­nently in stud­
ies focused on sub-Saharan Africa and small-scale farming households (Butt et al. 
2005; Grace et al. 2016; Smith and Haddad 2001). Ideal measures of household food 
avail­abil­ity would in­clude in­for­ma­tion on farm yield, ag­ri­cul­tural stor­age, pres­ence 
of lo­cally avail­­able food for pur­chase, di­ver­sity and qual­ity of avail­­able food, per­cep­
tions of food se­cu­ri­ty, mi­gra­tion, and re­mit­tances (Barrett 2010; Myers et al. 2017; 

Table 1  Criteria used to calculate months suitable for P falciparum malaria transmission in Africa

Simulated Effect Variable Threshold

Parasite Development and Vector 
Survival

Three-month moving average 
temperature

≥ (19.5°C + yearly SD of mean 
monthly temperature)

Frost Minimum yearly tem­per­a­ture ≥ 5°C
Availability of Vector Breeding 

Sites
Three-month moving average 

rainfall
≥ 60 mil­li­me­ters

Catalyst Month Three-month moving average 
rainfall

At least one month ≥ 80 
millimeters

Note: Modified from Tanser et al. (2003).
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Timmer 2012), and would be avail­­able on a monthly (or fin­er) scale or a sea­sonal 
time scale for each house­hold. As expected, data of this type are rarely avail­­able for 
sub-Saharan African households and are never available with the temporal and spatial 
detail suitable for a study of individual-level child health outcomes.

As a so­lu­tion, re­search­ers and de­vel­op­ment agencies (e.­g., USAID Famine Early 
Warning Systems Network [FEWS NET]) have es­ti­mated food avail­abil­ity and, con­
se­quen­tial­ly, food in­se­cu­rity through the use of re­motely sensed data of veg­e­ta­tion 
(Brown et al. 2012; Brown et al. 2015; Funk and Brown 2006; Funk and Budde 2009; 
Husak and Grace 2016). In this re­search, we use the Normalized Difference Vegeta­
tion Index4 (NDVI) as a proxy for com­mu­ni­ty-level food avail­abil­i­ty. Specifically, we 
use NDVI data from a data se­ries pro­vided by the Integrated Climate Data Center at 
Universität Hamburg (Pinzon and Tucker 2014). These data are a quality-controlled 
ver­sion of the NDVI data pro­vided by the National Aeronautics and Space Administra­
tion’s Global Inventory Monitoring and Modeling System (NASA-GIMMS; Tucker 
et al. 2005). NDVI serves as a mea­sure of green­ness and is avail­­able at a rel­a­tively 
fine spa­tial (1/12-de­gree grid cell, or roughly 8 ki­lo­me­ters) and tem­po­ral (bi­month­ly) 
res­o­lu­tion. Thus, NDVI al­lows for a proxy mea­sure of veg­e­ta­tion that varies through­
out the year and at a scale that is fine enough to re­flect vil­lage- or com­mu­ni­ty-level 
variation over space and time. Although food security is more complex than food 
avail­abil­ity alone, NDVI in semi­arid zones such as in Mali cap­tures the in­ter­an­nual 
var­i­abil­ity of yield across all­ crops. NDVI is par­tic­u­larly rel­e­vant in Mali be­cause the 
vast ma­jor­ity of Malian farm­ers rely on rain­fall as their pri­mary source of mois­ture, 
particularly in communities far from surface water (Husak and Grace 2016; FEWS 
NET live­li­hood re­ports for Mali, https:​/​/fews​.net​/west​-africa​/mali).

For es­ti­ma­tes of a vil­lage’s food se­cu­ri­ty, an an­a­lyst identifies the area where 
ag­ri­cul­ture is likely to be pro­duced and spa­tially ag­gre­gates the max­i­mum NDVI of 
pixels within that area to estimate the annual growing season’s crop production. Rel­
ative changes in this ag­gre­gate NDVI value en­able the an­a­lyst to iden­tify years when 
that com­mu­nity likely pro­duced more or less food, with a con­se­quen­tial in­crease or 
decrease in food security (Bakhtsiyarava et al. 2018). Although not op­ti­mal, NDVI 
as a proxy for food security allows researchers to (1) produce more policy-relevant 
find­ings through the use of an ap­proach com­mon across de­vel­op­ment agencies, and 
(2) address food security research questions in data-poor regions without any time-
varying information about smallholder farming practices.

Linking re­gional ag­gre­gate NDVI with food in­se­cu­rity re­quires the as­sump­tion 
that the rel­a­tive changes in NDVI be­tween years are due pre­dom­i­nantly to crop health 
and sub­se­quently ag­ri­cul­tural yield. However, it is pos­si­ble that cer­tain com­mu­ni­ties 
transitioned to a drought-tol­er­ant crop, which may lead to a false flag if that drought-
tol­er­ant crop is less green than the pre­vi­ous se­lec­tion. A low NDVI value for a ro­bust 
har­vest of a less-green drought-tol­er­ant crop would ap­pear to in­di­cate food in­se­cu­ri­ty, 
when in fact this decline is due entirely to agronomic strategy.

4  Under some cir­cum­stances, the Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced 
Vegetation Index (EVI) might be pre­ferred over NDVI. The EVI has been op­ti­mized to have a more sen­si­
tive re­sponse to densely veg­e­tated re­gions and to min­i­mize can­o­py-soil var­i­a­tions. In our da­ta, and in West 
Africa gen­er­al­ly, the EVI and NDVI are highly cor­re­lated (Zoungrana et al. 2015) and show negligible 
differences when used interchangeably in the food insecurity pathway models.
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Another po­ten­tially confounding fac­tor when con­sid­er­ing NDVI as a proxy for food 
in­se­cu­rity con­cerns com­mu­ni­ties’ cop­ing strat­e­gies when yields are sub­op­ti­mal, and 
the high prioritization of maximizing the health of pregnant women and infants. One 
such strat­egy is cir­cu­lar mi­gra­tion, in which one or more fam­ily or com­mu­nity mem­
bers leave to seek wage-earning op­por­tu­ni­ties else­where, thus re­duc­ing the num­ber of 
mouths to feed and in­creas­ing the per cap­ita food stores. In some Malian com­mu­ni­
ties, cir­cu­lar mi­gra­tion is wide­spread and rep­re­sents a nor­mal part of the tran­si­tion to 
adulthood (Hertrich and Lesclingand 2012, 2013), but it may be less com­mon un­der 
cer­tain con­di­tions, in­clud­ing dur­ing pe­ri­ods of drought (Findley 1994; Grace et al. 
2018). The im­pacts of mi­gra­tion on food se­cu­rity in the or­i­gin com­mu­ni­ties in Mali 
is not well un­der­stood. The very lim­ited mi­gra­tion data in­cluded in stan­dard, coun­try- 
rep­re­sen­ta­tive pop­u­la­tion/health sur­veys, es­pe­cially in countries re­li­ant on short-term 
mi­gra­tion, con­strain an­a­ly­ses and pre­vent us from tak­ing cir­cu­lar mi­gra­tion into ac­count.

Heat Stress

Heat stress is hypothesized to have negative impacts on the placenta and the devel­
op­ing fe­tus and is there­fore re­lated to ad­verse preg­nancy out­comes, such as low birth 
weight and preterm birth (Rylander et  al. 2013). The impact of exposures during 
dif­fer­ent stages of preg­nancy is not well un­der­stood, but it is the­o­rized that ex­po­sure 
to high temperatures during conception and early stages of pregnancy may delay 
con­cep­tions or in­crease the like­li­hood of mis­car­riage, pos­si­bly resulting in heavier 
babies at birth given that only the healthiest fetuses result in live births (Barreca 
et al. 2018; Wilde et al. 2017). Exposure during later stages of pregnancy has incon­
sis­tent out­comes but is typ­i­cally as­so­ci­ated with in­creased risk of pre­term birth, thus 
resulting in lower birth weights (Basu et al. 2016; Schifano et al. 2016). However, in 
some sub­sis­tence-based farm­ing set­tings, mainly those in the trop­ics, in­creased tem­
per­a­tures may cor­re­spond to in­creased ag­ri­cul­tural yields, which may be as­so­ci­ated 
with higher birth weights (Davenport et al. 2017; Ray et al. 2019).

Temperature measures used in climate-health analyses in low-income countries 
rely on a rel­a­tively coarse spa­tial scale (usu­ally 25–50 ki­lo­me­ters) and ei­ther a fine 
(daily max­i­mum val­ues, for ex­am­ple) or coarse (monthly or yearly av­er­ages) tem­po­
ral scale. There are several approaches used to aggregate temperature data with health 
or other pop­u­la­tion da­ta. Among the com­mon ap­proaches are cal­cu­lat­ing an­nu­al, sea­
son­al, or monthly means of daily max­i­mum val­ues, or de­riv­ing heat wave in­di­ca­tors, 
which often identify sequences of days when the daily maximum exceeds a spe­
cific thresh­old or per­cen­tile of the tem­per­a­ture dis­tri­bu­tion for a given lo­ca­tion (see 
Phalkey et al. 2015; Zhang et al. 2017). Where avail­­able, hourly mea­sures of tem­per­
ature data can provide additional context (Jiao et al. 2019), for ex­am­ple, by ex­am­in­
ing the impact of excessive nighttime or morning temperature on health outcomes.

Pathways in Application

Although the con­cepts of dis­ease, food in­se­cu­ri­ty, and heat stress are gen­er­al, how 
each stressor is mea­sured is con­text-de­pen­dent. Therefore, to ap­pro­pri­ately in­ves­
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ti­gate these path­ways in ap­pli­ca­tion, we must con­sider the par­tic­u­lar con­text of 
Mali as it re­lates to each path­way. Figure 1 highlights general rainfall and temper­
a­ture trends over a given year in Mali. Notably, the hot sea­son oc­curs from March 
to May, with tem­per­a­tures de­creas­ing as the rains be­gin in May. The rainy sea­son 
is the pri­mary ag­ri­cul­tural grow­ing sea­son for Malians. Planting typ­i­cally oc­curs 
some­time in June, and har­vest fol­lows in Sep­tem­ber. Mali has a clear north-south 
rain­fall gra­di­ent, with much lower lev­els of rain­fall in the north and higher lev­els 
in the south. In ad­di­tion, with­in-coun­try rain­fall var­i­abil­ity is fairly high: vil­lages 
as close as 10–20 ki­lo­me­ters apart may ex­pe­ri­ence dif­fer­ent rain­fall con­di­tions 
that mod­ify the start, length, and over­all qual­ity of the sea­son. As in other malaria-
en­demic con­texts, the pri­mary malaria sea­son oc­curs dur­ing the grow­ing sea­son, 
with most cases oc­cur­ring in June–Sep­tem­ber. However, sim­i­lar to the sit­u­a­tion 
for food se­cu­rity and ag­ri­cul­tural pro­duc­tion, with­in-coun­try var­i­abil­ity in rain­fall 
during a given year results in spatial variability in malaria transmission as well. 
Thus, in re­search in­ves­ti­gat­ing cli­mate and health, spa­tial and tem­po­ral var­i­abil­ity 
in environmental conditions and exposures requires a consideration of the condi­
tions where each person lives.

Identifying the spe­cific mech­a­nism us­ing cross-sec­tion­al, ob­ser­va­tional data is 
chal­leng­ing, es­pe­cially be­cause some of these con­di­tions are in­ter­re­lated and be­cause 
the climate measures used to capture rainfall and temperature variability are neces­
sar­ily proxy mea­sures, which may re­flect fac­tors that are not ex­plic­itly accounted for 
in the the­o­ret­i­cal de­sign. As the field of cli­ma­te-health schol­ar­ship rap­idly grows, 
researchers increasingly note the potential for climate and weather conditions to 
impact health outcomes through many potential pathways (Phalkey et al. 2015). To 
better isolate the contributions to adverse health outcomes associated with each of 
these po­ten­tial driv­ers, we use dif­fer­ent mea­sures de­rived from dif­fer­ent re­motely 
sensed and physically based data sets. Each measure has been validated in other re­
search and is mod­i­fied here for our study on birth weight out­comes in Mali.

Birth weight is used be­cause it pro­vi­des an eas­ily iden­ti­fi­able pe­riod of risk: the 
preg­nancy (ap­prox­i­ma­tely 9 months be­fore a child’s birth date) and prepregnancy 
pe­ri­ods (ap­prox­i­ma­tely 9–12 months be­fore a child’s birth date). Exposure to disease 
(malaria), heat stress, and food insecurity dur­ing preg­nancy may af­fect in­fant birth 
weight. Timing of exposure is important: exposures during prepregnancy and early 
pregnancy may contribute to failed conceptions or spontaneous abortions and result 
in a se­lec­tion bi­as, resulting in heavier babies at birth (see Catalano et al. 2016; Wilde 
et al. 2017; Zhang et al. 2017). Using tri­mes­ter-spe­cific mea­sures of ex­po­sure al­lows 
us to consider the differential risks associated with each trimester on birth weight 
outcomes.

To separate temperature effects associated with agriculture from those associated 
with heat stress, we ex­ploit Mali’s unique ag­ri­cul­tural cal­en­dar. Specifically, the hot 
sea­son (March–May), when tem­per­a­tures can ex­ceed 45°C, does not over­lap with the 
rainy grow­ing sea­son (June–Sep­tem­ber). Focusing on dif­fer­ent categories of tem­per­
atures conditions allows us to examine the impact of heat waves on pregnancy out­
comes sep­a­rately from the food pro­duc­tion path­way. Similarly, con­sid­er­ing rain­fall 
alone combines conditions that are ideal for malaria and for agricultural production. 
However, NDVI is an established mea­sure of ag­ri­cul­tural pro­duc­tion in Mali, where 
veg­e­ta­tion is al­most al­ways in­dic­a­tive of a source of food (or cash, in the case of cash 
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crops). Using NDVI to mea­sure sea­sonal qual­ity of the prior grow­ing sea­son will help 
ac­count for the com­pli­cated re­la­tion­ships among rain­fall, malaria, and food in­se­cu­
rity. Table 2 sum­ma­rizes the path­ways, the mea­sures and da­ta, and tim­ing con­sid­er­
ations for use in this anal­y­sis. Details on the spe­cific con­struc­tion of each path­way are 
presented in the Measures sec­tion.

Data

Population Data

The pop­u­la­tion data used in this re­search come from the 2000, 2006, and 2012 cross-
sec­tional Demographic and Health Surveys (DHS). Because of ease of use and con­
sis­tency across pe­ri­ods, we use DHS data from IPUMS DHS (Boyle et  al. 2018). 
DHS data con­tain highly de­tailed in­for­ma­tion on wom­en’s and chil­dren’s health for 
the poorest countries in the world. These data are widely used for research and pol­
icy investigations related to health and development. The data contain information 
on in­di­vid­u­al- and house­hold-level char­ac­ter­is­tics, in­clud­ing ed­u­ca­tional at­tain­ment, 
health, and house­hold as­sets. The data also con­tain ret­ro­spec­tive in­for­ma­tion on child 
and infant health outcomes as reported by the mother. The data are georeferenced at 
the level of the DHS com­mu­nity clus­ter. Clusters are spa­tially shifted (off­set) up to 
10 ki­lo­me­ters to main­tain con­fi­den­ti­al­ity of re­spon­dents but can be merged with other 
spatially referenced data as long as an appropriate spatial buffer5 is incorporated into 
an ag­gre­ga­tion strat­egy (see Davenport et al. 2017; Grace et al. 2019).

5  The spatial scale of the environmental data (described later) varies. In the cases where the spatial scale 
is finer than the DHS, we av­er­age the val­ues within the buff­er. In the case of tem­per­a­ture, for which the 
spa­tial scale is coars­er, mul­ti­ple DHS clus­ters fall within the same tem­per­a­ture pix­el.

Table 2  Primary mechanisms linking climate and infant health

Pathway Data/Measure Hypotheses and Associated Timings

Food Insecurity Normalized Difference 
Vegetation Index

High vegetation during growing season produces bet­
ter/more crops, which al­lows for greater food stor­age. A 
positive relationship during the following year’s hunger 
season is possible because more agricultural production 
implies improved household food availability. The results 
of improved storage/food availability would likely be 
ex­pe­ri­enced 9–12 months after the grow­ing sea­son, when 
higher birth weights may be observed.

Disease (Malaria) Rainfall and 
Temperature

Increased risk of disease occurs during the key malarious 
months. Exposure to more months with malaria conditions 
will potentially have a negative impact on birth weight.

Heat Stress Count of Days of High 
Temperatures

High temperatures during hot part of year could indicate 
exposure to heat stress. Negative impacts on birth weight 
are possible if a pregnant woman is exposed to heat stress 
during early pregnancy (impacts on placenta and uterus) 
and during late pregnancy (associated with preterm birth).
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Environmental Data

Rainfall Data

For the rain­fall da­ta, we use the Climate Hazards Center InfraRed Precipitation with 
Station (CHIRPS) data set (Funk et al. 2014b). The CHIRPS data set, de­vel­oped by 
the U.S. Geological Survey scientists in collaboration with the Climate Hazards Cen­
ter at the University of California Santa Barbara, com­bines a high-res­o­lu­tion (0.05 
degree) climatology (Funk et al. 2015) with time-varying station data and observa­
tions from geostationary weather sat­el­lites. The CHIRPS pe­riod of re­cord, 1981 to 
pres­ent, com­pares rea­son­ably well with in-situ rain gauge ob­ser­va­tions in Africa. 
Research pro­jects supported by the U.S. Agency for International Development use 
CHIRPS for monitoring and forecasting rainfall across Africa (Funk et al. 2014a). We 
use these rainfall data in combined with temperature to quantify malaria risk.

Temperature Data

We use temperature data provided by Princeton University’s Terrestrial Hydrology 
Research Group (Sheffield et al. 2006). These temperature data were extracted from 
a data set (version 3)6 of com­plete me­te­o­ro­log­i­cal forc­ings, in­clud­ing pre­cip­i­ta­tion, 
air tem­per­a­tures (min­i­mum, max­i­mum, and av­er­age), down­ward short- and longwave 
ra­di­a­tion, sur­face pres­sure, spe­cific hu­mid­i­ty, and wind speed. Since its de­vel­op­ment, 
the Princeton University data set has been used ex­ten­sively in the lit­er­a­ture. Most 
re­cent­ly, it has been used to study health out­comes in sub-Saharan Africa (Davenport 
et al. 2017), char­ac­ter­ize heat waves in West Africa (Odoulami et al. 2017), in­form 
projections of climate and land use change in West Africa (Wang et al. 2017), quan­
tify crop yield un­cer­tainty in sub-Saharan Africa (Dale et al. 2017; Srivastava et al. 
2017), and drive the Global Land Data Assimilation System (Rodell et al. 2004). These 
tem­per­a­ture data are pro­vided at 0.25 de­grees, which is the fin­est res­o­lu­tion cur­rently 
available for daily global temperature data. Although the spatial resolution is coarser 
than that of the pre­cip­i­ta­tion da­ta, tem­per­a­tures gen­er­ally ex­hibit less spa­tial var­i­abil­ity 
than pre­cip­i­ta­tion and thus do not re­quire such fine res­o­lu­tion. We use these tem­per­a­
ture data to iden­tify and com­pute heatwave events (i.­e., the heat stress path­way), and 
we combine these temperature data with precipitation totals to quantify malaria risk.

Vegetation Data

The Normalized Difference Vegetation Index (NDVI) is a mea­sure of veg­e­ta­tion 
health and thus a mea­sure of crop pro­duc­tion in a com­mu­ni­ty. NDVI is a mea­sure of 
green­ness, which has been shown to be re­lated to pri­mary pro­duc­tiv­ity and leaf area 
of plants (Sellers 1985; Townshend and Justice 1986), and pro­vi­des a way to di­rectly 
measure the impact of moisture and temperature conditions on vegetation health. In 
ap­pli­ca­tion, NDVI has been linked to lo­cal ag­ri­cul­tural pro­duc­tion and can be used 

6  http:​/​/hydrology​.princeton​.edu​/data​.pgf​.php
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to proxy variations in locally produced food (Grace et al. 2016; Husak et al. 2008). 
Here we use NDVI data from the Integrated Climate Data Center at Universität Ham­
burg; this data set is a qual­i­ty-con­trolled ver­sion of the NASA-GIMMS NDVI prod­
ucts (Tucker et al. 2005). The NDVI data are avail­­able at bi­monthly (∼15-day) time 
steps and 1/12-de­gree spa­tial res­o­lu­tion from 1981 to 2015.7 In this re­search, we 
con­sider sea­sonal max­i­mum NDVI to be a proxy for crop pro­duc­tion and ul­ti­mately 
food se­cu­rity and avail­abil­ity (i.­e., the food in­se­cu­rity path­way).

Measures

Outcome Variable

The out­come var­i­able is birth weight, which re­flects a clearly de­fined pe­riod of 
ex­po­sure: ap­prox­i­ma­tely nine months of ges­ta­tion. This de­fined pe­riod al­lows us to 
care­fully con­sider spe­cific ex­po­sures. Given that DHS data gen­er­ally do not con­
tain in­for­ma­tion nec­es­sary to cal­cu­late ex­act con­cep­tion date (or ges­ta­tional age), 
we approximate the date of conception as the nine months prior to the birth date. 
Consistent with the lit­er­a­ture on fe­tal growth and pre­na­tal ex­po­sures, we con­sider 
each trimester of a pregnancy separately and include the important 0th trimester (the 
prepregnancy or con­cep­tion pe­ri­od) (Bloomfield et al. 2013; Kramer 2003; Rylander 
et  al. 2013). Birth weight is recorded based either on a respondent’s recall of her 
child’s birth or on a health card. Recall may be impacted by other factors and may not 
be completely accurate. We therefore include a dummy variable in the models indi­
cating whether the birth weight information was from recall or from the medical card.

Among the 25.5% of respondents who did not report a birth weight for their child—
either because they could not remember the child’s birth weight or because the child’s 
weight was not mea­sured at birth—57% live in ur­ban ar­eas, and 66% are clas­si­fied as 
hav­ing no ed­u­ca­tional at­tain­ment. However, 87% of ru­ral and 86% of women liv­ing 
in pastoral areas reported birth weights. When considering birth weight reporting by 
month of birth, we find some var­i­a­tion, with most months hav­ing around 25% to 26% 
of miss­ing data on birth weight. In the fall (Au­gust–No­vem­ber), in­for­ma­tion on birth 
weight is some­what more likely to be miss­ing than in other months, with about 27% 
to 28% of births hav­ing no birth weight recorded. Comparative fig­ures for De­cem­ber 
and Feb­ru­ary are 23% and 24%, re­spec­tive­ly. Apart from the lower reporting of birth 
weight among ur­ban wom­en, it does not ap­pear that cer­tain times or places are rou­
tinely excluded from the analysis. We therefore do not believe that there is a pattern 
to this missingness that cor­re­lates with any of the path­ways in­ves­ti­gated here, and we 
do not con­sider this lim­i­ta­tion to in­flate the re­la­tion­ships ob­served here.

A fi­nal and vi­tally im­por­tant as­pect of DHS data is the in­clu­sion of in­for­ma­tion on 
length of time at cur­rent res­i­dence. A sin­gle ques­tion in the Mali DHS ques­tion­naire 
asks, “How long have you been liv­ing con­tin­u­ously in this town/vil­lage?”8 Responses 

7  This NDVI data se­ries is not updated reg­u­larly and cur­rently ends in De­cem­ber 2015. For an­a­ly­ses that 
re­quire more re­cent NDVI da­ta, the MODIS sat­el­lite im­ag­ery has been used to de­velop NDVI be­gin­ning 
in February 2000.
8  The ques­tion about length of time at the cur­rent res­i­dence is in­cluded in DHS sur­veys in other countries 
as well, but the ques­tion may be worded slightly dif­fer­ent­ly.
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are recorded using an annual time scale. Although not optimal for measuring indi­
vid­ual mi­gra­tions or ex­po­sures to dif­fer­ent en­vi­ron­men­tal risks, this ques­tion al­lows 
us to link in­di­vid­u­als to en­vi­ron­men­tal ex­po­sures. In terms of preg­nancy out­comes, 
respondents who have lived in the current community at least 12 months preceding 
childbirth are included in the analysis because the conditions that they were exposed 
to during pregnancy can be inferred.

For the 2000 and 2006 sur­veys, around 7% of the re­spon­dents were ei­ther not in 
the current community during the pregnancy period or did not provide a response 
to the ques­tion. This ques­tion was ex­cluded in the 2012 sur­vey, and we there­fore 
conducted the analyses separately for those with and without this residency infor­
ma­tion. No sig­nifi­cant dif­fer­ence in re­sults was detected when we com­pared re­sults 
across groups with and without residency information and with and without aligned 
ex­po­sures (re­sults avail­­able upon re­quest). The fi­nal mod­els presented here use all­ 
avail­­able da­ta, re­gard­less of res­i­dency in­for­ma­tion.

Independent Variables: Food Insecurity

We use grow­ing sea­son max­i­mum NDVI val­ues as our food in­se­cu­rity mea­sure. 
NDVI is best used as a com­par­a­tive mea­sure to in­di­cate whether one area has more 
vegetation than a neighboring area or for comparing one period with another. The sea­
sonal max­i­mum NDVI is cal­cu­lated for a 10-ki­lo­me­ter buffer cen­tered on each DHS 
cluster. The growing season typically begins in mid-June and lasts through harvest in 
Sep­tem­ber. To in­ves­ti­gate birth weight out­comes, we con­sider the max­i­mum NDVI 
of the growing season that occurred just before the pregnancy. This is the growing 
season that would impact the severity of food insecurity during the hunger season9 
occurring during the pregnancy. For a pregnancy that resulted in a birth in October of 
year t, we con­sider the NDVI from the grow­ing sea­son of year t. For a birth occurring 
in March of year t, we con­sider the grow­ing sea­son of year t – 1. In this way, we con­
sider a buffering time between when the food was actually harvested and when the 
har­vest may be­gin to be de­plet­ed. A lower NDVI value would in­di­cate that the hun­
ger sea­son would start ear­lier for a given com­mu­ni­ty, whereas a higher NDVI value 
would indicate that agricultural production was relatively improved (compared with 
other com­mu­ni­ties) and that more food would be stored, thus delaying and short­en­ing 
the hunger season.

Independent Variables: Disease (Malaria)

Malaria is mea­sured us­ing the bi­nary malaria in­dex from Tanser et al. (2003), which 
is based on physically derived critical weather thresholds determined to sustain trans­
mis­sion of the vec­tor. For each birth in our data set, we com­pute the num­ber of malar­
ious months for each of four tri­mes­ter pe­ri­ods (i.­e., with the three months lead­ing up 
to con­cep­tion con­sid­ered the 0th trimester, and the 1st–3rd trimesters fol­low­ing the 

9  The hunger season is the period when food stores from the previous year are depleted but harvests from the 
cur­rent year are not yet avail­­able. In a set­ting with a sin­gle grow­ing sea­son, like Mali, the hun­ger sea­son tends 
to over­lap with the grow­ing sea­son. For this pro­ject, we use the hun­ger sea­son cal­en­dars from FEWS NET.
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stan­dard defi­ni­tions). This in­dex ranges from 0 to 3, with lower val­ues in­di­cat­ing 
lower risk of exposure to malaria during a given trimester and higher values indicat­
ing an increased risk.

Independent Variables: Heat Stress

Heat stress is measured using daily maximum temperatures from a data set on mete­
orological forcings developed by the Terrestrial Hydrology Research Group at 
Princeton University (Sheffield et al., 2006). Quadratic and cubic approaches have 
been used in other analyses in addition to a binned approach and a threshold approach 
(i.­e., days above an ar­bi­trary cut­off val­ue). Based on this re­search, a thresh­old or 
binned ap­proach best cap­tures ex­po­sure to heat stress in hot and dry en­vi­ron­ments, 
with the focus on the hotter end of the distributions. Use of binned temperatures pro­
duces highly correlated independent temperature variables that were ultimately not 
use­ful. For this anal­y­sis, af­ter ex­plor­ing sev­eral tem­per­a­ture thresh­olds and binned 
ap­proaches, we use a sim­ple count of the num­ber of hot days above 100°F, which is 
con­sis­tent with other ap­proaches (see Davenport et al. 2017; Deschenes et al. 2009; 
Grace et al. 2015). Exploratory anal­y­sis on the use of wet-bulb tem­per­a­ture, which 
con­sid­ers hu­mid­ity to cap­ture the “feels like” tem­per­a­ture, does not dra­mat­i­cally vary 
from the an­a­ly­ses us­ing the tem­per­a­ture data set reported here. In ad­di­tion, the hot­test 
time of year in Mali is also the dri­est time of year, in­di­cat­ing that wet-bulb tem­per­a­
ture would not provide a better measure of the lived conditions.

Table 3 provides summary information on the data used in the analysis.

Analytic Approach

To investigate the differential impact of these different pathways linking climate and 
health out­comes, we es­ti­mate a suite of re­gres­sion mod­els us­ing reported birth weight 
as the continuous outcome variable. We use ordinary least squares (OLS) regression 
and adjust for clustering at the level of the mother (due to multiple children birthed 
to the same mother).10 Because individual factors related to health and development 
are of known sig­nifi­cance, we in­clude these var­i­ables in the mod­els to ac­count for 
the variability in the outcome associated with them. Control variables are maternal 
ed­u­ca­tion and age at birth, in­fant sex, in­fant’s birth or­der, and floor­ing type. The lat­ter 
can be used as a measure of household wealth and development. Rather than include 
the DHS wealth in­di­ca­tor, which is designed for use when con­sid­er­ing a sin­gle sur­vey 
pe­riod and which may cap­ture broad ur­ban-ru­ral dif­fer­ences in de­vel­op­ment, we use 
floor­ing type along with ed­u­ca­tion level as coarse in­di­ca­tors to dis­tin­guish the poor­
est re­spon­dents (those with un­fin­ished floor­ing and no ed­u­ca­tional at­tain­ment) from 
other re­spon­dents (those with fin­ished floor­ing and pri­mary or sec­ond­ary ed­u­ca­tion). 

10  We also use multilevel regression models and conduct two separate models. We nest individuals within 
clus­ters in one mod­el, and we nest in­di­vid­u­als within moth­ers. In other words, we treat the clus­ter or the 
mother as a ran­dom ef­fect. No sig­nifi­cant dif­fer­ence in our find­ings re­sults from these dif­fer­ent an­a­lytic 
approaches.
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We also ad­just for month and year of birth, length of time at cur­rent res­i­dence, sur­vey 
year, and the live­li­hood zone where the house­hold is lo­cat­ed.11 The first set of re­gres­
sion mod­els (Models 1–3) includes these con­trol var­i­ables and the cli­mate in­di­ca­tors 
for the three pathways described in Table 2.

Finally, we con­sider the re­sults us­ing the OLS mod­els but where the rel­e­vant 
exposure period associated with the particular characteristics of the location is not 
con­sid­ered in the ways that we have de­scribed. In other words, in­stead of looking 
spe­cifi­cally at hot sea­son tem­per­a­ture con­di­tions dur­ing the preg­nan­cy, we look at 
average monthly maximum temperature during each trimester of pregnancy. We con­
sider rainfall similarly and look at average monthly rainfall during each trimester of 

11  Data on live­li­hood zones come from FEWS NET and are used to cap­ture broad trends in the ways that 
people produce food or earn money.

Table 3  Variables used in the analyses

Mean SD %

Dependent Variable
  Birth weight (grams) 3,217 864
  Low birth weight (< 2,500 grams) 1,930 411
Key Independent Variables
  Seasonal max­i­mum NDVI 0.56 0.17
  Count of malarious months 0.59 0.91
  Count of hot days 22.7 24.6
Control Variables
  Child’s birth order 3.7 2.4
  Child’s sex (%)
    Male 52
    Female 48
  Mother’s age (years) 28.4 6.9
  Mother’s ed­u­ca­tional at­tain­ment (%)
    Never attended 66
    Completed primary or beyond 34
  Birth weight source (%)
    Card 31
    Memory 69
  Floor material (%)
    Dirt 52
    Finished 48
  Livelihood zone (%)
    Agriculturalists 34
    Urban 33
    Agropastoralists 27
    Pastoralists 2
    Irrigated 4
  Survey year (%)
    2001 26
    2006 40
    2012 34

Notes: The sample used for each analysis varies based on exposure timing. We calculate descriptive infor­
mation using the sample for the analysis of hot days.
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pregnancy. We investigate the results from this more general approach that does not 
ad­dress spe­cific path­ways as­so­ci­ated with the en­vi­ron­men­tal mea­sures to de­ter­mine 
whether any sig­nifi­cant dif­fer­ences in model per­for­mance emerge when we use the 
exposure-based approach focused on the different pathways.

Results

We present the results from the four models corresponding to the three pathways 
of po­ten­tial im­pact: malaria, heat stress, and food insecurity. We pres­ent par­tial 
dependence plots for the key pathway variables; regression tables can be found in 
the ap­pen­dix. Beginning with the food in­se­cu­rity path­way, we mea­sure ag­ri­cul­tural 
pro­duc­tion by NDVI and fo­cus on tri­mes­ter-spe­cific ex­po­sures to the hun­ger sea­son. 
Figure 2 pres­ents the NDVI re­sults four sep­a­rate mod­els cor­re­spond­ing to the pe­riod 
of pregnancy when the exposure occurred.

Our assumption is that a child born in year t is likely to weigh more when the t – 1 
sea­sonal max­i­mum NDVI value is higher. When the con­cep­tion pe­riod (what we call 
the 0th tri­mes­ter, oc­cur­ring dur­ing year t) oc­curs dur­ing the hun­ger sea­son, we see a 
positive association between birth weight (for the birth occurring around 12 months 
lat­er) and the sea­sonal max­i­mum NDVI value (from year t – 1) (  p = .14). For the cases 
when the first tri­mes­ter oc­curs dur­ing the hun­ger sea­son, we see a sim­i­larly pos­i­tive 
re­la­tion­ship (  p = .10) be­tween NDVI (from t – 1) and birth weight. We sim­i­larly see 
pos­i­tive as­so­ci­a­tions for both the sec­ond and third tri­mes­ters as well (  p < .05 for both 
cases). Fetal weight gain oc­curs dur­ing the later stages of preg­nan­cy, and the re­sults 
indicate that a stronger prior agricultural season is associated with a heavier infant 
(Bloomfield et al. 2013).

To in­ves­ti­gate the re­la­tion­ship be­tween malaria and birth weight out­comes, we 
use an indicator variable that combines rainfall and temperature characteristics as a 
mea­sure of con­di­tions that would sup­port the pres­ence of malaria. In this case, each 
birth that resulted in a live birth (with a birth weight) is included in a single regres­
sion mod­el, and the num­ber of months dur­ing each tri­mes­ter (again, in­clud­ing a 0th 
trimester) is considered. Figure 3 shows these results and highlights a positive asso­
ciation between birth weight and exposure to malarious months in the third trimester. 
In other words, when a re­spon­dent was ex­posed to more malarious months dur­ing the 
last stage of preg­nan­cy, her child’s birth weight was larger (  p < .01).

This result is inconsistent with our initial expectation that exposure to malaria would 
reduce birth weight. We believe that this counterintuitive result is explained by the 
association between greater exposure to malaria and an increased risk of spontaneous 
abor­tion dur­ing later tri­mes­ters. In other words, we spec­u­late that the pro­cess by which 
malarious conditions impact pregnancy is through reducing the likelihood that less 
healthy pregnancies are carried to term and ultimately producing a group of healthier 
in­fants. Although the re­sult ini­tially seems coun­ter­in­tu­i­tive, in fact, this idea is not new.

The potential that adverse environmental conditions contribute to miscarriages 
and still­births, or even pre­vent con­cep­tions, and there­fore re­sult in in­fants who are 
healthier has been explored and documented in numerous studies focused on wealthy 
countries (Catalano and Bruckner 2006; Catalano et  al. 2016; Wilde et  al. 2017). 
Although not the central focus of our research (consequently detailed results are not 
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presented but are avail­­able from the first au­thor), we in­ves­ti­gate this pos­si­bil­ity in 
simple ways by considering how changes in malarious conditions during pregnancy 
relate to the sex of an infant: more malarious months associated with increased like­
lihood of female infants may indicate some prenatal selection. We also use data from 
the DHS on nonlive birth out­comes for Mali and in­ves­ti­gate whether the risk of non­
live birth outcomes is associated with malarious conditions.

In terms of malarious con­di­tions impacting the sex of an in­fant, re­sults in­di­cate 
that when the third tri­mes­ter of a preg­nancy has a greater share of malarious months, 
the likelihood of a female infant birth increases. No similar impact is observed in ear­
lier stages of pregnancy. In terms of evaluating the impact of malarious exposure on 
preg­nancy out­comes that do not re­sult in live births, our anal­y­sis in­di­cates that women 
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Fig. 2  The relationship between NDVI values (year t – 1) and birth weight according to trimester-specific 
exposure to the hunger season (year t)
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who were ex­posed to more malarious con­di­tions af­ter Month 2 of preg­nancy were 
more likely to experience a nonlive birth. Both sets of results support the notion that 
malarious exposure has a positive impact on birth weight through a selection process.

In the third mod­el, presented in Figure 4, we in­ves­ti­gate the re­la­tion­ship be­tween 
heat stress dur­ing each tri­mes­ter and birth weight out­comes. To mea­sure heat stress, 
we count the number of hot days that each respondent was exposed to during her preg­
nancy. Here we look at all births and consider the count of hot days during each of the 
four tri­mes­ters. As discussed ear­li­er, the hot sea­son in Mali does not oc­cur dur­ing the 
growing season but rather before the growing season. This setting then allows us to 
investigate high temperatures as an aspect of heat stress separately from considering 
how temperature conditions relate to agricultural production. Although the exact mag­
ni­tude of the ef­fect of heat stress on birth out­comes is highly un­cer­tain, the gen­eral 
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Fig. 3  The relationship between malarious conditions during each trimester of pregnancy and birth weight 
for all children in the sample

D
ow

nloaded from
 http://dup.silverchair.com

/dem
ography/article-pdf/58/2/499/909832/499grace.pdf by guest on 23 April 2024



517An Analysis of Birth Weight in Mali

0 20 40 60 80

3,
00
0

3,
10
0

3,
20
0

3,
30
0

Days Over 100��F

P
re

d
ic

te
d

 B
ir

th
 W

ei
g

h
t

3rd Trimester Exposure

(n  = 9,542 children)

0 20 40 60 80

3,
00
0

3,
10
0

3,
20
0

3,
30
0

Days Over 100��F
P

re
d

ic
te

d
 B

ir
th

 W
ei

g
h

t

2nd Trimester Exposure

(n  = 9,542 children)

0 20 40 60 80

3,
00
0

3,
10
0

3,
20
0

3,
30
0

Days Over 100��F

P
re

d
ic

te
d

 B
ir

th
 W

ei
g

h
t

1st Trimester Exposure

(n  = 9,542 children)

0 20 40 60 80

3,
00
0

3,
10
0

3,
20
0

3,
30
0

Days Over 100��F

P
re

d
ic

te
d

 B
ir

th
 W

ei
g

h
t

0th Trimester Exposure

(n  = 9,542 children)

Fig. 4  The relationship between exposure to days above 100°F during each trimester of pregnancy and 
birth weight

trend is a neg­a­tive slope for ex­po­sures, in­di­cat­ing that an in­fant is likely to have lower 
birth weight when ex­posed to more days over 100°F dur­ing the third tri­mes­ter (  p < .01) 
and first tri­mes­ter (p = .06). Heat stress experienced by a pregnant woman during these 
two tri­mes­ters could po­ten­tially lead to pre­term birth or in­tra­uter­ine growth re­stric­tion, 
thereby increasing the risk of low birth weight (Rylander et al. 2013).

Finally, to im­prove our un­der­stand­ing of these re­sults, we ex­plore one fi­nal mod­el­
ing approach: we calculate general average rainfall and temperature conditions during 
each tri­mes­ter of the births in our sam­ple. This ap­proach, which mir­rors com­monly 
used ap­proaches that have pro­duced a range of dif­fer­ent out­comes, is a sim­ple and 
straightforward strategy that makes no assumptions about the pathways linking envi­
ronmental conditions to health outcomes. The aim of this approach is to determine 
whether variability in weather conditions during pregnancy is associated with vari­
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ability in birth weight outcomes. Figure 5 displays the relationship between average 
monthly rain­fall av­er­aged over each tri­mes­ter, and Figure 6 displays the relationship 
between average maximum temperature over each trimester.

The temperature results are consistent across the two models and suggest that 
either count of hot days or average temperature conditions experienced during a preg­
nancy could be used in re­lated an­a­ly­ses. This find­ing makes sense given that Mali 
is a relatively warm place and that average temperature conditions are correlated 
with counts of hot days when hot days are de­fined as >100ºF (correlation = .94 for 
all­ tri­mes­ters). Thus, higher counts of hot days will oc­cur dur­ing the time when the 
average temperature is greater. In a place with more seasonal variability in tempera­
tures or a grow­ing sea­son that cor­re­sponds with the hot­test time of year, we an­tic­i­pate 
that these different measures would produce more distinct results. The precipitation 
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Fig. 5  The relationship between exposure to average monthly precipitation averaged over each trimester 
of pregnancy and birth weight
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mod­el, how­ev­er, pro­duces re­sults that do not align with ei­ther the malaria path­way or 
the food se­cu­rity path­way. (The cor­re­la­tion be­tween NDVI and pre­cip­i­ta­tion is less 
than +/–.08 for all­ tri­mes­ters, which is not en­tirely sur­pris­ing con­sid­er­ing the dis­pa­
rate temporal scales between the variables.) Relative to this commonly used aver­
ag­ing ap­proach, the path­way ap­proach seems to re­veal dis­tinctly dif­fer­ent pat­terns 
in the da­ta. In fact, the di­rec­tion and mag­ni­tude of re­sults vary by tri­mes­ter when 
the average precipitation approach is used. Because the pathway approach relies on 
mea­sures that are more closely aligned with the ways that in­di­vid­u­als liv­ing in Mali 
in­ter­act with the land­scape, the path­way-spe­cific re­sults are likely to pro­vide greater 
insight into the effect of precipitation and weather on children’s health. The pathways 
approach provides a way of directly quantifying the nonlinear and often indirect rela­
tion­ship be­tween pre­cip­i­ta­tion and ag­ri­cul­tural yield, and thereby chil­dren’s health.
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Fig. 6  The relationship between exposure to average temperature conditions during each trimester of 
pregnancy and birth weight
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Finally, we con­sider the out­come var­i­able as a cat­e­gor­i­cal var­i­able, com­par­ing low 
birth weight (LBW) in­fants with healthy birth weight in­fants. To con­struct this var­i­able, 
we use the World Health Organization’s threshold by which any child with a weight 
be­low 2,500 grams is con­sid­ered LBW. With re­spect to the path­way var­i­ables, the re­
sults are generally consistent in terms of the direction of the relationship and the level of 
sig­nifi­cance when the cat­e­gor­i­cal var­i­able rather than the con­tin­u­ous var­i­able is used. A 
no­ta­ble ex­cep­tion is when eval­u­at­ing the im­pact of hot days. During the 0th tri­mes­ter, if 
a woman is ex­posed to more hot days while preg­nant, the risk of a LBW birth in­creases 
(a re­la­tion­ship that is not sig­nifi­cant in the case of the con­tin­u­ous var­i­able, al­though the 
di­rec­tion of the re­la­tion­ship is the same). Another note­wor­thy find­ing is the sig­nifi­cance 
of the birth weight re­call var­i­able. Using the con­tin­u­ous var­i­able, we do not find any 
sig­nifi­cant dif­fer­ences in birth weight depending on whether a re­spon­dent re­calls the 
birth weight or has it documented on a health card. Alternatively, in­di­vid­u­als who re­call 
the birth weight of their infant are more likely to recall a LBW compared with those 
women who had the birth weight information documented on a health card.

Discussion

Demographic and pub­lic health re­search ex­am­in­ing the neg­a­tive im­pacts of cli­mate 
change continues to reveal vulnerabilities and highlight groups at great risk for adverse 
health im­pacts. Pregnant women and chil­dren are fre­quently iden­ti­fied as those fac­ing 
some of the greatest risks associated with climate change through factors associated 
with food se­cu­ri­ty, dis­ease, and heat stress (Phalkey et al. 2015; Rylander et al. 2013). 
In sub-Saharan Africa, chil­dren born with de­creased birth weight or low birth weight 
potentially face a lifetime of ill health and reduced earnings—factors that may be felt 
by subsequent generations (Rylander et al. 2013). In sub-Saharan Africa, health risks 
as­so­ci­ated with cli­mate change, such as re­duced birth weight, are compounded be­
cause in ad­di­tion to di­rect ef­fects as­so­ci­ated with heat stress, many fam­i­lies and in­di­
vid­u­als rely on rainfed ag­ri­cul­ture to meet their nu­tri­tion needs. Furthermore, in some 
countries, malaria is a con­stant cause of ma­jor ill­ness, some­times resulting in death.

Ongoing and dra­matic im­prove­ments in the quan­tity and qual­ity of high-fre­quen­cy, 
remotely sensed data have facilitated dramatic improvements in climate data for use 
in population-environment and climate-health research centered in sub-Saharan 
Africa. These data have been used in many disciplines to help address some of the 
ma­jor lim­i­ta­tions in the avail­abil­ity of fi­ne-scale, tem­po­rally vary­ing quan­ti­ta­tive data 
used to proxy food insecurity and disease exposure not included in the standard sur­
vey data set. Merging spa­tially ref­er­enced sur­vey data with these high-fre­quency data 
sets has produced a growing body of research that generally indicates that climate and 
weather in­flu­ence health out­comes, with many lin­ger­ing ques­tions about the di­rec­
tions of the relationships and mechanisms linking climate and health.

In this pro­ject, we se­lected a coun­try with a very de­fined grow­ing and hun­ger sea­
son (dis­tinct from the hot sea­son), high tem­per­a­tures dur­ing the hot sea­son, and high 
disease prevalence (with malaria being endemic) to examine an approach for isolat­
ing some of the most fre­quently cited mech­a­nisms linking pop­u­la­tion, health, and 
the en­vi­ron­ment. We also fo­cused spe­cifi­cally on in­fant birth weight. The ap­proach 
we used here focused on measuring the pathways of interest using different data or 
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in­di­ca­tors that are more closely aligned with the spe­cific path­way of in­ter­est. Because 
the cli­ma­te, to­pog­ra­phy, and de­vel­op­ment level of Mali is rel­a­tively con­sis­tent with 
other land­locked West Af­ri­can countries, these re­sults can po­ten­tially be gen­er­al­ized 
to neigh­bor­ing countries. Central, Eastern, and Southern Africa face dif­fer­ent con­
di­tions (mul­ti­ple grow­ing sea­sons, highly var­i­able to­pog­ra­phy within the coun­try, 
pres­ence of ir­ri­gated ag­ri­cul­ture, and so forth), which may make the re­sults less ap­pli­
ca­ble. Nonetheless, the ap­proach that we have outlined in terms of spec­i­fy­ing the tim­
ing of exposure to better evaluate mechanisms connecting individual health outcomes 
documented in surveys and their climate/environmental contexts may be useful for 
structuring related questions in other contexts. Other outcomes beyond birth weight 
can be used as well, in­clud­ing chronic or acute health out­comes. The only re­quire­
ments are that place of residence and exposure conditions be considered and that spe­
cific tim­ing of ex­po­sures be ap­pro­pri­ately linked to the path­ways of in­ter­est.

Overall, our re­search dem­on­strates the com­plex­ity in­volved in quan­ti­ta­tive stud­ies 
of climate-health that rely on merging survey data and diverse sources of environmen­
tal data. Our results demonstrate the usefulness of deriving different contextually rele­
vant measures capturing pathways linking precipitation variation and health. Based on 
our use of dif­fer­ent en­vi­ron­men­tal mea­sures, the re­sults of this re­search dem­on­strate 
the importance of local food production on the health outcomes of pregnant women. 
In gen­er­al, our re­sults in­di­cate that more veg­e­ta­tion (as mea­sured by NDVI) has a 
pos­i­tive im­pact on birth weight out­comes. Notably, we constructed this as a lagged 
variable with the idea of measuring food in the community during the hunger period; 
there­fore, the re­sults in­di­cate that women who ex­pe­ri­ence preg­nan­cies fol­low­ing a rel­
atively (over time or over space) better season have babies with a higher birth weight. 
Malaria ex­po­sure, which is re­lated to rain­fall, pro­duced re­sults that seem to sup­port 
a selection (or “culling”) hypothesis. When more months within a trimester (espe­
cially the third tri­mes­ter) were char­ac­ter­ized as malarious, we ob­served an in­crease in 
birth weight. These re­sults were con­sis­tent across all­ model spec­i­fi­ca­tions and af­ter we 
accounted for in­di­vid­ual ed­u­ca­tion or live­li­hood zones. Our an­a­lytic ap­proach, which 
relies on dif­fer­ent mea­sures to cap­ture dif­fer­ent but re­lated en­vi­ron­men­tal con­di­tions, 
high­lights the ways that en­vi­ron­men­tal con­di­tions im­pact hu­man health out­comes, 
especially with regard to conditions related to rainfall. These results can be useful for 
pol­icy de­vel­op­ment be­cause they high­light spe­cific pe­ri­ods of greater risk: women in 
later stages of pregnancy seem to be at greater risk for adverse outcomes related to heat 
waves, whereas the sec­ond tri­mes­ter of preg­nancy may be when ex­po­sures to in­ad­e­
quate nutrition and malaria have the greatest impacts on birth outcomes.

This re­search pro­vi­des in­sights into cli­ma­te-health mod­el­ing, but the study’s lim­
itations must also be considered. Birth weight data were reported in 75% of cases in 
the data we used, with the ma­jor­ity of the miss­ing birth weight in­for­ma­tion con­cen­
trated among ur­ban re­spon­dents. We in­cluded ur­ban res­i­dence as a fixed ef­fect in 
the mod­els, and the con­cen­tra­tion of miss­ing birth weight among ur­ban re­spon­dents 
likely resulted in bi­as­ing the re­sults to­ward the null rather than in overinflating sig­nif­
i­cance. Still, it rep­re­sents a real lim­i­ta­tion of the DHS data on birth weight.

Further, the malaria in­dex is not ideal (Tanser et al. 2003), likely mismeasuring 
some months. The malaria in­dex con­sid­ers tem­per­a­ture and rain­fall, and most of 
the months that are assigned a value of 1 are growing season months. Our strategy 
of sep­a­rat­ing NDVI from malaria and us­ing com­pletely dif­fer­ent tim­ings and data 
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should help to distinguish the effects of food availability from those of malaria expo­
sure, but only to an ex­tent. The malaria in­di­ca­tor is likely best suited for iden­ti­fy­ing 
malaria risks in places where malaria is epidemic or where there are historically few 
out­breaks. Therefore, the pos­i­tive as­so­ci­a­tion ob­served be­tween the third tri­mes­ter 
and malaria exposure may capture some aspect of growing season conditions or some 
other artifact of the climatological conditions that make up the index.

Finally, at the be­gin­ning of this ar­ti­cle, we discussed the meth­od­o­log­i­cal op­por­tu­
nities associated with using high-frequency spatial data of different spatial and tem­
po­ral scales to bet­ter cap­ture lo­cal con­texts. In fact, this re­search largely fo­cuses 
on the im­por­tance of con­sid­er­ing lo­cal con­texts—spe­cifi­cal­ly, the geo­phys­i­cal and 
landscape contexts—to advance climate-health research. And although conceptual 
frame­works that high­light so­cial, be­hav­ior­al, and cul­tural fac­tors un­der­pin our re­
search, the spe­cific ways that in­di­vid­u­als in­ter­act and re­spond to dif­fer­ent en­vi­ron­
mental or health conditions and events is not captured here. We acknowledge that it is 
of fundamental importance to consider the social and cultural aspects of health with 
at­ten­tion to how those fac­tors vary over space and time. In Mali, for ex­am­ple, re­
search has shown that child health is related to the marital and household status of the 
child’s mother and to factors related to the mother’s household status when she was 
a child her­self (spe­cifi­cal­ly, whether the mother was a fos­tered youth) (Castle 1995; 
Dettwyler 1993). Research also shows that poor wa­ter qual­i­ty, time re­quired to col­
lect fuel­wood for cooking, and in­ad­e­quate fi­nan­cial re­sources to af­ford med­i­cal care 
dur­ing preg­nan­cy, birth, and later on have sig­nifi­cant im­pacts on chil­dren’s health and 
development (Adams et al. 2002; Bove et al. 2014; Dettwyler 1993). Furthermore, 
farm­ers and house­holds may re­spond dif­fer­ently to sim­i­lar en­vi­ron­men­tal con­di­tions, 
resulting in differing health and economic outcomes.

Thus, within these ar­eas of re­search, not all­ in­di­vid­u­als face the same out­comes 
despite sharing similar environmental exposures. It is clear from the research that 
ad­verse health out­comes, such as low birth weight, re­sult from mul­ti­ple interacting 
fac­tors. Dettwyler (1993:36) noted that there is a culturally and contextually impor­
tant “safety net of overlapping support systems” created by a family and community 
to guard the health of children. In the case of adverse health outcomes such as low 
birth weight, these chil­dren have slipped through the com­plex safety net. Among 
re­search­ers, very lit­tle is known about lo­cally rel­e­vant safety nets or how preg­nant 
women man­age ex­treme heat, ex­po­sure to malaria, or food in­se­cu­ri­ty. It is a chal­
lenge for quantitative data and analyses to capture and measure the range of safety 
nets, and it is one of the im­por­tant lim­i­ta­tions of this re­search and the grow­ing field 
of climate-health research. None of the data sets used in this analysis provide insight 
into management or coping strategies associated with health decisions used in the 
face of climate change. In addition to worthwhile and ongoing efforts by quanti­
ta­tive re­search­ers to use existing data to bet­ter cap­ture im­por­tant cli­mate fea­tures, 
qualitative research that investigates resource management and climate adaptation 
strategies at the household and individual levels is greatly needed to further advance 
re­search in this ar­ea. ■
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