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Abstract We estimate the effects of declining smoking and increasing obesity on
mortality in the United States over the period 2010–2040. Data on cohort behavioral
histories are integrated into these estimates. Future distributions of body mass indices
are projected using transition matrices applied to the initial distribution in 2010. In
addition to projections of current obesity, we project distributions of obesity when
cohorts are age 25. To these distributions, we apply death rates by current and age-25
obesity status observed in the National Health and Nutrition Examination Survey,
1988–2006. Estimates of the effects of smoking changes are based on observed
relations between cohort smoking patterns and cohort death rates from lung cancer.
We find that changes in both smoking and obesity are expected to have large effects
on U.S. mortality. For males, the reductions in smoking have larger effects than the
rise in obesity throughout the projection period. By 2040, male life expectancy at age
40 is expected to have gained 0.83 years from the combined effects. Among women,
however, the two sets of effects largely offset one another throughout the projection
period, with a small gain of 0.09 years expected by 2040.
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Introduction

A wide variety of personal behaviors affect an individual’s health. In the aggregate,
these behaviors affect the health of populations. The two behaviors that have been
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singled out as especially damaging to the health of the U.S. population are smoking
and the interplay of diet and physical activity that results in obesity. Estimates by the
Centers for Disease Control (CDC) suggest that 18 % of deaths in the United States in
2000 were attributable to smoking and 15 % resulted from obesity (Mokdad et al.
2004, 2005). The prevalence of obesity has been rising in the United States, but
cigarette smoking has declined (Fig. 1).

Uncertainty about the future effect of these behaviors is a central component of the
uncertainty surrounding projections of future mortality (Technical Panel 2011).
According to simulations by the Office of the Actuary, the 75-year actuarial balance
of the Old-Age and Survivors Insurance program of the Social Security
Administration (SSA) is more sensitive to variation in future mortality rates than it
is to any other demographic or economic parameter except real wages (Trustees
2012). A reliable projection of the effects of these two behaviors on future life
expectancy would contribute to a better understanding of the fiscal future of the
United States (Soneji and King 2012).

In this article, we estimate the effects of declining smoking and increasing obesity on
mortality at ages 40+ in the United States over the period 2010–2040. Our estimates
incorporate information about cohorts’ behavioral histories, allowing mortality rates to
be a function not only of current behaviors but also of past behaviors. Prospective cohort
studies demonstrate that the history of obesity, in addition to baseline obesity, is an
important risk factor in mortality (Abdullah et al. 2011; Preston et al. 2013). Duration of
smoking is strongly related to mortality risks among current smokers (Thun et al. 1997).
An analytic advantage of incorporating behavioral histories into projections of future
mortality levels is that many features of those histories have already been observed and
are not themselves products of an uncertain future.

Overview of Analytic Strategy

Our goal is to estimate the effect of changes in the lifetime distributions of smoking
and obesity on future death rates. We project body mass index (BMI) distributions

Fig. 1 Trends in smoking and obesity in the United States. Sources: Cigarette consumption data per adult
per year are extracted from U.S. Department of Agriculture (2007). Obesity data are based on measured
body mass index in NHANES from 1960 to 2010
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that contain both past and contemporaneous levels of obesity. We then apply multi-
dimensional mortality risks that reflect the effect of past and current levels of obesity
on mortality. These risks are derived from recent experience observed in the National
Health and Nutrition Examination Survey (NHANES).

In the case of smoking, we take advantage of the fact that there is a clear marker of
the impact of smoking histories on mortality: death rates from lung cancer. Smoking
is the overwhelming factor accounting for variation in lung cancer mortality. Among
U.S. men aged 30 and older in 2005, an estimated 90 % of lung cancer deaths are
attributable to smoking; for females, the figure is 84 % to 85 % (Oza et al. 2011).
Consistent with a major role for behavioral histories, death rates from lung cancer are
organized on a cohort basis in the United States and elsewhere. This feature permits
the identification of “cohort effects” that can be projected into the future as cohorts
age. The final step in our analysis is translating projected death rates from lung cancer
into all-cause mortality rates, using statistical relations that have been developed
between smoking’s effect on lung cancer and its effect on all-cause mortality.

In the case of both smoking and obesity, our goal is to estimate the proportionate
effect of changes in these behaviors on age-specific death rates. Our comparison
schedule is simply the age-specific death rates at baseline, 2009–2010, which reflect
the behavioral histories that had been accumulated at that point. We are not attempting to
project mortality rates themselves, but rather only to estimate the effect of changes in
these behaviors on mortality. If there are other sources of future change in mortality, we
are implicitly assuming that the effects of changes in these behaviors will be independent
of them. King and Soneji (2011) produced Bayesian forecasts of American mortality
(also see Soneji and King 2012). Smoking and obesity were integrated into the forecasts,
but the analysis does not identify their separate or joint effects.

Projecting the Effects of Changes in Obesity

We project the effects of past and future changes in obesity in three stages. First, we
project obesity distributions from 2010 to 2040 using sex- and age-specific BMI
transition matrices derived from NHANES. We use a combination of the five 10-year
transition matrices that were reported in NHANES between 1999 and 2008. We
present evidence that 10-year BMI transition matrices have been nearly constant for
the past eight years, and we maintain the assumption of constancy into the future.
Second, we project the distribution of age-25 BMI from 2010 to 2040. That is, for
each age group through 2040, we estimate the distribution of BMI when the cohort
occupying that age group was aged 25. Third, we apply death rates drawn from
NHANES to the distribution of current BMI and BMI at age 25.

Forecasting the Future Distribution of Obesity

Previous forecasts of obesity can be classified into three categories. The most
common procedure has involved extrapolation of past trends in the prevalence of
obesity, most often by using a linear model (Ruhm 2007; Stewart et al. 2009; Wang
et al. 2008). Linear models do not recognize that the proportion of the population at
risk of becoming obese declines as the proportion obese rises. A recent analysis using
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linear extrapolation reached the implausible conclusion that all Americans would
become obese by the year 2048 (Wang et al. 2008).

A second approach involves forecasting BMI levels on the basis of a predictive
regression model and extrapolations of covariate series (Finkelstein et al. 2012). A
wide array of factors associated with obesity have been identified as important
influences on caloric imbalance (see Baum and Chou (2011) for a good review).
The only study that has used such an approach to projection built a predictive model
using state-level covariates believed to be associated with obesity. Covariates includ-
ed alcohol and gas prices, the price of healthy relative to unhealthy foods, the
unemployment rate, and state indicator variables. The main limitations of this ap-
proach are that selection of covariates can be arbitrary and that projection of covariate
series often involves as much uncertainty as projecting obesity directly.

We adopt a third approach: Markov modeling (Basu 2010). Markov models simulate
flows of individuals through mutually exclusive states. Individuals are arrayed by BMI
at baseline (Time 1) and are subjected to a set of probabilities of being found in various
BMI states at some future date (Time 2), dependent on what state they were in at Time 1.
A set of transition probabilities can also be applied to project the distribution from Time
2 to Time 3. Relative to extrapolation, this approach does not require specification of a
functional form. A second advantage is that such models are able to recognize what is
empirically observable—that an individual’s BMI level at Time 2 depends on his or her
BMI level at Time 1. If those functions were changingwildly from period to period, they
would provide an unstable basis for projection. However, we will show that the 10-year
pattern of weight transitions has become relatively stable, and we project that stability
into the future.

To develop transition probabilities, we use data fromNHANES, a series of nationally
representative surveys of the noninstitutionalized U.S. population conducted by the
National Center for Health Statistics (NCHS). The survey includes an examination
component in which extensive medical data, including height and weight, are collected
by trained nurses in mobile clinics or at in-home visits. We use data on measured height
and weight at the time of the survey to calculate current BMI. Certain NHANES surveys
ask respondents to recall their weight 10 years prior to the survey.1 We combine data on
recall weight with current height to estimate “recall BMI” in each period. To reduce bias
that may result from inaccurate recall of past weight, we apply an individual-level
correction factor based on the proportionate error between measured and self-reported
BMI at baseline (Flegal et al. 1995). The combination of corrected recall BMI and
current BMI serves as the data inputs for estimating 10-year transition probabilities. We
use four BMI categories: Normal (BMI <25.0), Overweight (25.0 to 29.9), Obese I (30.0
to 34.9), and Obese II-III (35.0+).

We use ordered logistic regression models to estimate age- and sex-specific
transition probabilities across BMI categories in each of three decadal periods
between 1980 and 2010 (i.e., 1980–1990, 1990–2000, 2000–2010). A key question
is how well these transition matrices predict changes in obesity that have actually
occurred. We show in Online Resource 1 that the transition matrices are highly

1 These data are available for ages 35 and older, so we are limited to modeling transitions beginning
at age 25.
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effective in projecting the BMI distributions observed in various NHANES from the
beginning to the end of each projection period.

The summary transition matrices for all ages combined, denoted as M, are shown
in Table 1 for these three periods; Table 2 shows the changes in transition probabil-
ities in each cell between the two successive matrices. The changes from 1980–1990
to 1990–2000 are large and systematic. The probability of moving up in weight class
was significantly higher during 1990–2000 than in 1980–1990. Even the highest
weight class, from which no upward movement is possible, contributed to the upsurge
in obesity by virtue of a significant increase in the probability of remaining in Obese
II–III if a person started there.

In contrast, the changes between 1990–2000 and 1998–2008 were small. Only 1 of
the 16 cells in the transition matrix showed a significant change in the transition
probability during this period. On the basis of the relative stabilization of the BMI
transition matrix over the past two decades, we generate a transition matrix combin-
ing data from five NHANES surveys from 1999 to 2008 and assume that this matrix
is constant over the three decades starting in 2010. The summary matrix is presented
in Table 3. The implication of this assumption of constancy is that the multitude of
processes that produce weight change would operate with the same intensity in the
future as they did in the recent past.

To project the BMI distribution after 2010, we begin with initial population counts
in the 2009–2010 continuous NHANES, cross-classified into 96 categories according
to sex, five-year age group (25–29 to 80–84), and measured BMI category (Normal,
Overweight, Obese Class I, and Obese Class II–III). Sample weights are incorporated
so that counts are representative of the U.S. population in that period. In each round
of the projection, the first step is to survive members of the population forward 10
years using age-, sex-, and BMI-specific life tables drawn from pooled NHANES III
and NHANES continuous 1999–2004 cohorts linked to deaths in the National Death
Index through 2006. A discrete hazards model on a person-month file was employed
to generate the underlying risks.

In the second step, sex-, age-, and BMI-specific transition probabilities are applied
to surviving members of the population. Each iteration of the projection produces
new population counts, which serve as the initial counts for the next iteration of the
projection. A new cohort of 25- to 34-year-olds is assumed to enter the population
each decade. The distribution of BMI in these cohorts is predicted through extrapo-
lation of the historical trend.2

Figure 2 presents the results of these projections for men and women. By 2040, 47 %
of men and 51 % of women are projected to be obese. Some deceleration in the rate of
increase in obesity is evident with the passage of time, in contrast to linear extrapola-
tions. The morbidly obese (BMI ≥ 35.0) increase as a proportion of the obese for both
males and females, to the point where they constitute a majority of obese women by
2020 and thereafter.

2 We estimate a historical series for ages 25–34 using measured data on height and weight from NHANES
continuous waves 1999–2010. We regress the proportion in each BMI category on the logarithm of time
(years since 1970), an indicator for sex as well as an interaction between the two, and use the parameters of
the model to predict the proportions in each category of BMI for each sex in 2020, 2030, and 2040.
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Forecasting the Future Distribution of Age-25 BMI

We project age-25 BMI levels for all cohorts who will be aged 25–84 at any time
between 2010 and 2040. We begin with initial population counts in 2005 arrayed by
sex, age, and BMI at age 25. These are derived from NHANES continuous waves
2003–2006. BMI at age 25 is calculated by combining self-reported weight at age 25
with measured height at baseline for individuals younger than age 50 and by
combining self-reported weight at age 25 with self-reported height at age 25 for
individuals aged 50 or older. We then survive the initial distribution forward in five-
year intervals using sex-, age-, and age-25 BMI-specific life tables. Prior to estimat-
ing the initial population distribution and life tables, we apply an individual-specific
correction factor to reported age-25 BMI to account for potential errors in reporting.

Table 2 Ten-year BMI transition matrices in the United States: Differences in transition probabilities
(standard errors) across periods (adults aged 25–84)

1980–1990 and 1990–2000 1990–2000 and 1998–2008

Normal Over Obese I
Obese
II–III Normal Over Obese I

Obese
II–III

Normal –.057* .044* .011* .002* .022 –.011 –.009* –.001

(.019) (.016) (.004) (.001) (.020) (.017) (.005) (.001)

Overweight –.012 –.040* .030 .022* –.010 .029 –.014 –.004

(.011) (.017) (.015) (.010) (.013) (.022) (.021) (.014)

Obese Class I –.006 –.061* –.033 .100* .003 .046 .010 –.059

(.004) (.023) (.019) (.035) (.004) (.024) (.022) (.031)

Obese Class II–III –.002 –.026* –.089* .117* .001 .015 .041 –.056

(.001) (.013) (.035) (.047) (.001) (.014) (.039) (.053)

Sources: Transition probabilities for 1980–1990 were estimated using data from the National Health and
Nutrition Examination Survey (NHANES) III; those for 1990–2000 and 1998–2008 were estimated using
data from NHANES continuous waves 1999–2002 and 2007–2008, respectively.

*p < .05

Table 3 Sex-specific 10-year BMI transition matrices in the United States: Transition probabilities (standard
errors) across categories of body mass index and sex (U.S. adults aged 25–84)

Males Females

Normal Over Obese I
Obese
II–III Normal Over Obese I

Obese
II–III

Normal .62 (.01) .34 (.01) .04 (.00) .01 (.00) .60 (.01) .35 (.01) .04 (.00) .01 (.00)

Overweight .13 (.01) .53 (.01) .27 (.01) .07 (.00) .07 (.01) .44 (.01) .37 (.01) .13 (.01)

Obese Class I .02 (.00) .23 (.01) .44 (.01) .31 (.01) .02 (.00) .16 (.01) .41 (.01) .40 (.02)

Obese Class
II–III

.00 (.00) .06 (.01) .24 (.02) .70 (.03) .00 (.00) .05 (.01) .22 (.02) .73 (.02)

Sources: Transition matrices were developed using combined data from NHANES 1999–2008.
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Again, this correction factor is calculated as the proportionate error between mea-
sured and self-reported BMI at baseline. Details may be found in Online Resource 2.

Estimating Death Rates by Category of BMI

Data for the mortality analysis are derived by pooling the NHANES III (1988–1994)
and NHANES continuous 1999–2002 surveys. BMI at baseline is calculated using
measured data on height and weight. For purposes of calculating BMI at age 25,
measured height at baseline is used for all individuals because self-reported height at
age 25 was not available in NHANES III. To reduce bias in estimates of the mortality
effects of obesity resulting from reverse causation, we exclude individuals with
emphysema or a smoking-related cancer3 at baseline, and we also eliminate the first
three years of exposure. A discrete hazard model is used on a person-month file.

Fig. 2 Actual and projected trends in body mass index. Dotted lines indicate projections. Sources:
Historical values are calculated using the National Health and Nutrition Examination Survey II, III,
1999–2004 and 2009–2010

3 The category of smoking-related cancers is based on relative risks in a recent large study (Pirie et al. 2012)
and includes cancers of the lung, larynx, mouth/tongue/lip, esophagus, bladder, kidney, and pancreas.
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Information on deaths is available through December 31, 2006. There were 1,894
deaths among 13,737 respondents.

Our BMI categories at age 25 are Overweight (BMI 25.0 to <30.0), Obese (≥30.0),
and Normal (<25.0). At baseline, the categories are Obese I (30.0 to <35.0), Obese II–
III (≥35.0), and Other (<30.0). The main model includes age-25 and baseline BMI
categories, age attained over follow-up (years), sex, race/ethnicity (white, black,
Hispanic, or other), educational attainment (less than high school, high school
diploma/GED, some college, or college graduate), and smoking status at baseline
(current, former, or never). We include interaction terms between linear attained age
(measured from age 40) and the two baseline obese categories because of strong
evidence that the relative risk of death among obese individuals declines with age
(Prospective Studies Collaboration 2009). Models are estimated on a sample of
attained ages 40–84. NCHS-supplied survey weights and design elements (strata
and primary sampling units) are used.

Coefficients are shown in Table S2 in Online Resource 2. Weight at age 25 as well as
baseline weight categories are related to the risk of death in the expected direction. Age
interactions with baseline obesity are negative, as expected, and are retained in predictions.

Uncertainty Analysis

We analyze uncertainty in the effects of obesity on change in life expectancy using a
bootstrapping procedure (Efron and Tibshirani 1986).We combine uncertainty originating
from three sources: estimation of age-, sex-, and BMI-specific transition rates; age-, sex-,
and BMI-specific life tables used to survive the population forward; and parameters of the
model relating current BMI and BMI at age 25 to mortality. BMI transition matrices were
estimated using an ordered logit model, and the life tables and coefficients relating current
BMI and BMI at age 25 to mortality were generated using discrete hazards models. We
use a multivariate random normal distribution to simulate the parameters of each of the
three models, inputting the mean parameter values and the variance-covariance matrix of
each of the regressions. Using the bootstrapped coefficients, we estimate 1,000 sets of
transition matrices and life tables, and used these to generate 1,000 predictions of future
obesity levels. We then apply each obesity projection to the bootstrapped coefficients of
the mortality model to predict mortality rates and life expectancy effects. We extract the
2.5 and 97.5 percentile values as 95 % confidence intervals (CI).

Results

The combined effect of the projected changes in BMI, including age-25 overweight and
obesity, and the estimatedmortality risks are shown in Fig. 3. For bothmales and females,
the effect of changes in BMI is expected to increase over time and to be proportionately
greater for younger people (e.g., younger than age 65) than for older people.

We converted the projected sets of proportionate changes in age-specific
death rates into estimates of their effect on a summary measure, life expectancy
at age 40, e(40). Online Resource 3 describes the procedures used to translate
our estimates of age-specific death rate changes into their effects on life
expectancy. As shown in Table 4, when converted into estimates of the effects
on life expectancy at age 40, the estimated decline in life expectancy (mean,
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Fig. 3 Effects of projected trends in BMI on age-specific death rates

Table 4 Changes in life expectancy at age 40 resulting from changes in smoking and obesity (confidence
intervals in parentheses)

Changes in Smoking Alone Changes in Obesity Alone Changes in Smoking and Obesity

Year Males Females Males Females Males Females

2015 0.26 –0.03

(0.07, 0.47) (–0.52, 0.46)

2020 0.54 0.04 –0.30 –0.27 0.24 –0.22

(0.33, 0.76) (–0.44, 0.53) (–0.47, –0.15) (–0.39, –0.15) (–0.02, 0.52) (–0.72, 0.28)

2025 0.81 0.15

(0.58, 1.08) (–0.33, 0.63)

2030 1.05 0.32 –0.54 –0.56 0.53 –0.21

(0.78, 1.35) (–0.15, 0.81) (–0.79, –0.30) (–0.81, –0.32) (0.15, 0.90) (–0.72, 0.31)

2035 1.31 0.62

(1.00, 1.67) (0.20, 1.13)

2040 1.54 0.85 –0.73 –0.82 0.83 0.09

(1.18, 1.94) (0.41, 1.38) (–1.04, –0.42) (–1.17, –0.47) (0.37, 1.32) (–0.45, 0.69)
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males and females) resulting from rising obesity is 0.28 years by 2020, 0.55
years by 2030, and 0.78 years by 2030.

These estimated effects are smaller than those estimated by Stewart et al. (2009),
who projected a loss of 1.02 years in life expectancy between 2005 and 2020 as a
result of increases in obesity. There are probably several reasons for this disparity.
First, their linear extrapolation of BMI proportions produced a somewhat faster
increase in obesity than our use of BMI transition matrices. Second, Stewart et al.
(2009) used NHANES mortality rates by obesity status for the period beginning in
1971, whereas our mortality rates are derived from a period beginning in 1988. The
mortality risks associated with obesity have declined in NHANES (Mehta and
Chang 2011). On the other hand, unlike Stewart et al. (2009), we have intro-
duced historical data on BMI at age 25. We will show that our estimated effects
of increases in obesity on life expectancy would have been smaller had we not
incorporated this information.

Projecting the Effects of Changes in Smoking

The risk of death from smoking is a function of many smoking-related behaviors,
including the number of cigarettes smoked per day, the degree of inhalation, the
filtration and tar content of the cigarette, and how each of these (and other)
components of a smoking profile have developed over a lifetime. Historical
information is important because of a long lag between smoking behavior and
its effects on mortality. A single cross-sectional indicator of smoking prevalence
cannot effectively capture these many dimensions. Prevalence-based estimates of
smoking risks are also affected by imprecise classification of smoking status
among participants. Fortunately, another indicator of the health effects of smoking
reflects the many dimensions of smoking: the death rate from lung cancer. As
noted earlier, smoking is the overwhelming risk factor in death from lung cancer,
with 90 % of male and 84 % to 85 % of female lung cancer deaths in the
United States attributable to smoking (Oza et al. 2011). Because of the cumula-
tive and delayed impact of smoking on lung cancer mortality, lung cancer
exhibits prominent cohort effects; rates of death from lung cancer are more
predictably arrayed by birth cohort rather than by period (Janssen and Kunst
2005; Preston and Wang 2006; Willets 2004; Yamaguchi et al. 2000).

Our estimates of the mortality effects of changes in smoking are based on
the identification of cohort effects in lung cancer mortality. Mortality levels
that are unique to cohorts are obviously a convenient vehicle for projecting
mortality because cohorts age with completely predictable regularity. A second
stage in the estimation of the effect of changes in smoking patterns is to
translate projected changes in lung cancer mortality into changes in all-cause
mortality.

Data for Analysis of Cohort Effects in Lung Cancer Mortality

Data on lung cancer deaths by age, sex, and period are drawn from annual volumes of
Vital Statistics of United States for periods from 1940 through 1949, from the
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Website of the World Health Organization/International Agency for Research on
Cancer for 1950 through 1998, and from files of Underlying Cause of Death 1999–
2009 on CDC WONDER Online Database for 1999–2009 (National Center for
Health Statistics 2012). In this article, lung cancer refers to cancer of lung, bronchus,
trachea, and pleura. The International Classification of Diseases (ICD) was used to
identify lung cancer deaths. The entire study period of 65 years from 1945 to 2009 are
covered by ICD from version 5 to version 10. The corresponding ICD version codes
used for each individual time period are listed in the following table.

Year (ICD Version) ICD Codes

1939–1948 (ICD-5) 47b-47f

1949–1957 (ICD-6) 162, 163

1958–1967 (ICD-7A) 162, 163

1968–1978 (ICD-8A) 162

1979–1998 (ICD-9) 162

1999–2009 (ICD-10) C33, C34

Estimates of population size and counts of deaths from all causes combined are
taken from the Human Mortality Database for 1933–2007. These data for 2008 and
2009 are drawn from National Center for Health Statistics (2012).4

Data on smoking by cohort are based on a detailed reconstruction of smoking
histories by Burns et al. (1998). They employed a total of 15 National Health
Interview Surveys (NHIS) conducted between 1965 and 1991 to estimate cohort
smoking histories (see Fig. 4). David Burns supplied us with unpublished estimates
using the same methodology that incorporates data from three additional National
Health Interview Surveys through 2001. We update the series using NHIS data
through 2009. We convert these data into an estimate of the average number of years
spent as a current smoker before age 40. This value is derived by summing across
ages between 0 and 39 the annual proportion of cohort members who were estimated
to be current cigarette smokers.

For cohorts that had not reached age 40 in 2010, we estimate the future cumulative
years of smoking by age 40 based on observed cumulative years smoked at younger
ages. For this purpose, we use regressions predicting the mean cumulative years of
smoking by age 40 with independent variables representing cumulative smoking
indexes by age 35, age 30, age 25, and age 20. We add a sex indicator and a trend
variable to the regressions. Regressions are estimated on data for the 16 cohorts for
which we have complete data up to age 40. The regressions in all cases explain at
least 97 % of the variance in cumulative years of smoking before age 40. For the two
cohorts born after 1990, we fix the variable at its level estimated for the 1985–1990
cohort. The resulting series are presented in Fig. 4.

4 Estimates pertaining to birth cohorts are created by organizing a data matrix in five-year age groups and
five-year time blocks. In order to align cohort mortality data with cohort smoking data, we define five-year
birth cohorts that are centered on birth years 1900–1904, 1905–1909, and so on. For example, mortality
rates in the birth cohort of 1905–1909 were composed of death rates at ages 40–44 in 1947–1951, death
rates at ages 45–49 in 1952–1956, and so on. The final mortality observations for cohorts still alive are
death rates in 2007–2009.
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Methods for Projecting the Mortality Effects of Smoking

Our initial goal is to identify how lung cancer mortality varies from cohort to cohort
so that we can project these cohort effects into the future. We try two principal ways
to estimate cohort effects. One is to relate lung cancer mortality to a cohort smoking
variable that had proven useful in prior research on all-cause mortality (Preston and
Wang 2006; Wang and Preston 2009). As noted, that variable is the mean cumulative
number of years that a member of a cohort had smoked prior to age 40, designated Sc

for cohort c. For each sex, we estimate an equation of the form

lnðMc
a
Þ ¼ Aþ β

a
X a þ β

s
lnðScÞ þ ε, ð1Þ

where Ma
c is the lung cancer death rate at age a in cohort c, Xa is an indicator of age

category a, βa is the coefficient of age category Xa, and βs is the coefficient of ln(S
c). We

estimate this model using negative binomial regression on death counts on all
observations at ages 40–44 to 80–84 for periods beginning in 1947–1951. This starting
period was chosen because it produced the best fit to actual death rates in 2009 among all
potential start years from 1937 to 1987. The coefficients of ln(Sc) are 1.279 for males and
0.929 for females. Greater sensitivity of males than females to their respective smoking
histories was also found by Preston and Wang (2006) and Wang and Preston (2009)
based on all-cause mortality. It is also a common finding in prospective cohort studies,
perhaps because women smokers on average consume fewer cigarettes per day, inhale
less frequently, and smoke cigarettes lower in tar content (Thun et al. 1997). Age
coefficients are monotonically and smoothly rising at a diminishing rate for both sexes.

The second approach is to estimate cohort effects as coefficients of dummy
variables pertaining to various cohorts, without any reference to smoking histories.5

Using negative binomial regression on death counts, we estimate the parameters of a
straightforward age/cohort model,

lnðMc
aÞ ¼ Aþ β

a
X a þ β

c
X c þ ε, ð2Þ

5 Such an estimate could bemade using an age/period/cohort model, but it is widely recognized that introducing
age, cohort, and period variables into the same model creates an identification problem because of the perfect
linear association between any two of these variables and the third (Fienberg and Mason 1978). Our efforts to
introduce period measures into an age/cohort model were unsuccessful in the sense that they resulted in
implausible cohort and period effects, presumably because of these colinearity issues. A second reason for not
invoking an age/period/cohort model is that we had no strong hypothesis about period effects on lung cancer
mortality, given that we considered such mortality to be primarily a function of cohort smoking histories.

Fig. 4 Mean number of years spent as a cigarette smoker before age 40 by cohort. Sources: Data are
derived from the National Health Interview Survey
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whereMa
c is the lung cancer death rate in cohort c at age a, βa and βc are the coefficients of

age category a and cohort c, and Xa and Xc are indicators of age and cohort membership.
Figure 5 plots cohort effects estimated from Eq. (2) and the mean number of years

of smoking before age 40 for each cohort, used to estimate Eq. (1). The two series for
women obviously track each other closely, including a bump for female cohorts born
1955–1964. For men, both series are hill-shaped, although the peak of the smoking
series occurs earlier than the peak cohort coefficient. Figure 5 illustrates that cohort
effects in lung cancer are dominated by smoking histories.

Our projections are based on Eq. (1), which uses the smoking series. A main
advantage of this approach is that we are able to observe smoking behavior for cohorts
as young as ages 15–19. In contrast, the cohort coefficients from Eq. (2) are not robustly
estimated until a cohort has reached the 40s, when substantial numbers begin to die from
lung cancer. Furthermore, the smoking-based analysis produces predicted death rates in
2009 that are much closer to the actual death rates in that year than the analysis using
cohort coefficients, which significantly underestimate mortality for older cohorts.

We test the predictive validity ofModel 1 by estimating the parameters of the model on
data through 1995–1999 and using the age and cohort coefficients to project mortality in
2005–2009. Comparing the projected mortality level to the actual level in the prime ages
of 50–84, the mean error in projected rates is 1.54 % for males and 1.17 % for females.
The mean absolute error is 4.64 % for males and 5.64 % for females. A prediction of “no
change” between 1995–1999 and 2005–2009 produces a mean error of –28.23 % for
males (i.e., an overprediction) and –9.65 % for females. The mean absolute errors for a

Fig. 5 Cohort coefficients predicting lung cancer mortality and cumulative cohort smoking by age 40.
Sources: Data on smoking are derived from the National Health Interview Survey. Coefficients are derived
from age/cohort model of lung cancer mortality
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no-change prediction are 28.23% for males and 14.36% for females. These are obviously
many times greater than errors produced by our model, which performs well in predicting
changes in lung cancer mortality between 1995–1999 and 2005–2009. We conclude that
our model proves effective in out-of-sample prediction. It is worth noting that at these
ages, a 10% error in all age-specific death rates would produce an error of less than 3% in
life expectancy (Keyfitz and Golini 1975).

Translating Changes in Lung Cancer Mortality into Changes in All-Cause Mortality

Although lung cancer mortality serves as an excellent marker of the health effects of
smoking, lung cancer does not account for a majority of deaths attributable to smoking.
Cardiovascular diseases, other cancers, and chronic obstructive pulmonary diseases
(COPD, which includes bronchitis and emphysema) also make large contributions. Two
methods have been developed to connect smoking-related mortality from lung cancer to
smoking-related mortality from other causes of death. Peto et al. (1992) converted
observed lung cancer death rates into an estimate of smoking “prevalence” by referring
to the difference between lung cancer death rates for smokers and nonsmokers in Cancer
Prevention Study II (CPS-II). They then used this estimate of smoking prevalence to
estimate the risk attributable to smoking for other smoking-related causes of death by
employing the cause-specific relative risks for smokers versus nonsmokers from CPS-II.

The secondmethod also uses lung cancer mortality as the basic indicator of the damage
caused by smoking (Preston et al. 2010, 2011). However, rather than relying on the relative
risks from CPS-II or any other study, it estimates the macro-level statistical association
between lung cancer mortality and mortality from all other causes of death in a data set of
21 countries covering the period 1950 to 2006, including 9.9 billion person-years of
exposure and 284 million deaths. In addition to lung cancer mortality, the statistical model
includes age, sex, period, and country effects as well as interactions among them.

The two methods of translating lung cancer mortality into all-cause mortality give
very similar results (Preston et al. 2010). Both methods implicitly assume that the
pattern of lags between smoking and lung cancer death is similar to that between
smoking and other causes of death. This assumption appears reasonable: using the
Peto et al. (1992) approach, Oza et al. (2011) found that the estimated number of
deaths attributable to smoking differed by only 1.7 % when cause-specific lag
structures were incorporated compared with when they were not.

To translate projected lung cancer death rates into death rates from all causes, we
use the set of translation factors by age and sex drawn from Preston et al. (2011).6

Later, we explore the sensitivity of results to this choice of translation factors.

Uncertainty Analysis

We analyze uncertainty in our estimates of the effects of smoking on change in life
expectancy using a bootstrapping procedure similar to that used in the analysis of obesity.

6 Preston et al. (2011) did not estimate coefficients for ages below 50. We assume that the coefficients for
ages 50–54 apply to ages 40–49. Because coefficients decline with age, this choice probably produces an
underestimate of smoking-attributable deaths, but there are very few smoking-related deaths in the age
interval 40–49, so results are little affected by this assumption.
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We generate 1,000 sets of bootstrapped coefficients for the lung cancer mortality and
Preston/Glei/Wilmoth models. We then apply the 1,000 sets of age-specific lung cancer
mortality rates to the 1,000 sets of PGW coefficients to calculate mortality from all
causes and life expectancies at age 40. The 2.5 and 97.5 percentile values from the
simulated life expectancy estimates are extracted as the 95 % confidence interval. The
uncertainty estimates for the combination of smoking and obesity are obtained in a
similar manner.

Results

Figure 6 presents the results of the smoking analysis. Male age-specific death rates
are expected to decline at every age throughout the projection period. The heaviest-
smoking male cohorts are already aged 80+ in 2010, and the effect of persistent
declines in smoking from cohort to cohort is to produce a steady decline in relative
death rates as time advances. In contrast, female rates are expected to rise in the oldest
age intervals during the early years as heavier-smoking cohorts replace lighter-
smoking ones. Projected male declines are larger than female declines in nearly all
comparisons, reflecting the more gradual changes in cohort smoking propensities
among women.

Table 4 converts the age-specific projections of mortality change into estimates of the
effect on life expectancy at age 40. Males show a relatively steady improvement in life

Fig. 6 Effects of projected trends in smoking on age-specific death rates
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expectancy from smoking reductions and a total gain of 1.52 years by 2040. In contrast,
female life expectancy is expected to fall from changing smoking patterns between 2010
and 2015 as the heaviest smoking cohorts continue moving into the prime ages of dying.
There is projected to be virtually no gain in female life expectancy as a result of smoking
reductions between 2010 and 2020. However, female gains accelerate after 2025 as the
heaviest smoking cohorts begin to disappear. By 2040, women are projected to have
gained 0.85 years in e(40) from smoking reductions.

Two other projections have been made of anticipated changes in mortality as a result of
changing smoking patterns. Wang and Preston (2009) added a cohort smoking term to the
conventional Lee-Carter model of mortality change from all causes of death combined.
They summarized their results in the form not of life expectancy but rather of the
probability of surviving from age 50 to age 85. For the projection period 2009–2034,
they estimated that reductions in smoking will increase the probability of male survival by
15.8 % and of female survival by 7.2 %. In the present set of projections, changes in this
probability between 2010 and 2035 are 13.4 % for males and 4.7 % for females. The
proportion of lung cancer deaths attributable to smoking is in the range of 85 % to 90 %
(Oza et al. 2011), whereas the proportion of all-cause deaths attributable to smoking is in
the neighborhood of 20 % (Mokdad et al. 2004, 2005). Accordingly, mortality from lung
cancer is a much more sensitive indicator of the damage from smoking than is all-cause
mortality. As a result, we believe the present estimates are more reliable.

Stewart et al. (2009) also projected the effects of changes in smoking on future life
expectancy by extrapolating trends in smoking distributions and applying death rates by
smoking status from NHANES. They did not differentiate between the sexes. They
estimated that in a 15-year projection period beginning in 2005, declines in smoking will
produce a 0.31-year gain in life expectancy at age 18. In our 15-year projection beginning
in 2010, we estimate that declines in smoking will raise life expectancy at age 40 by 0.80
years for males and 0.15 years for females, with an average gain of 0.47 years.7 Although
our results appear to show a faster improvement than theirs, the rate of improvement
accelerates through the period. In our 10-year projection ending in 2020, the same year
that the Stewart et al. projections end, our gain in life expectancy (mean, males and
females) is 0.28 years compared with their 0.31 years over the preceding 15-year period.
Thus, our results appear reasonably consistent with theirs over this short projection period.

Combining Obesity and Smoking

Are the effects of changes in smoking and obesity likely to be additive and independent,
as we have assumed, or might there be important interactions between them? Two types
of interactions may be relevant. One refers to behavioral associations between smoking
and obesity. To take the most obvious example, if smoking reduces the likelihood of
being obese, then declines in smoking should be reflected in increases in the prevalence
of obesity. Flegal et al. (1995) estimated that 20 % of the increase in adult obesity
between 1980 and 1990 is a result of smoking cessation during that period. Using data
on two cohorts from the National Longitudinal Study of Youth, Baum and Chou (2011)

7 Changes in life expectancy at ages 18 and 40 are highly comparable because so few years of life are lost
between these ages.
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estimated that only 2 % of the increase in obesity among young adults over a recent 20-
year period was attributable to declines in smoking. These are not large effects, and there
is no obvious reasonwhy the relation between the prevalence of the two risk factors over
the next decades would differ from that in the recent past.

The second type of interaction is interaction between the two mortality risks them-
selves. If the mortality risk from obesity is lower among smokers, as is sometimes
claimed (Allison et al. 2001), then the projected reduction in smoking should raise the
number of deaths attributable to obesity. On the other hand, such an interaction would
imply that the mortality risk from smoking is lower among the obese, which would
result in a reduction in the number of deaths attributable to smoking as obesity increases.
Because the prevalence of the two risk factors is moving in opposite directions, any such
interaction would produce effects that are at least partially offsetting. Unfortunately, our
research design does not allow us to investigate such interactions.

Assuming independence between the mortality risks of obesity and smoking, we
multiply the effects of changes in obesity and smoking presented in Figs. 3 and 6.
Results are shown in Fig. 7. The preponderant downward slope of both sets of results
when smoking and obesity are considered independently is accentuated when the
effects are multiplied. The obesity effect dominates the smoking effect below age 60,
where death rates are projected to be higher than baseline throughout the projection

Fig. 7 Combined effects of projected trends in smoking and obesity on age-specific death rates
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period. Above age 60, the smoking effect is clearly dominant and produces reductions
in mortality.

Table 4 summarizes these changes in the form of life expectancy at age 40. The
combined effect of changes in smoking and obesity is expected to produce steady
improvements in male life expectancy through 2040, with a total gain of 0.83 years
by that date. On the other hand, women’s life expectancy is expected to be lower as a
result of the combined changes through 2030. Thus, the combined effects of changes
in smoking and obesity are expected to maintain the pattern of reductions in the
female advantage in life expectancy that has been evident in national life tables since
1979. By 2040, life expectancy is anticipated to be 0.09 years higher for females as a
result of these combined behavioral changes.

Sensitivity Analyses

We perform six analyses of the effect of changes in procedures on outcomes. In
each case, we estimate the effect of an alternative procedure on age-specific
death rates and convert those rates into estimated effects on life expectancy at
age 40. Results for life expectancy at age 40 are shown in Table 5, where
values are the difference between the life expectancy value produced by the
alternative procedure and that produced by our main procedures. A positive
value means that the alternative procedure resulted in a gain in projected life
expectancy relative to the main procedure. When the alternative procedure
relates to obesity, the comparison is made with the main obesity results.
Smoking results are compared with smoking results.

Table 5 Sensitivity of results to changes in procedures

Effect on Life Expectancy at Age 40 Relative to Main Projectiona

2020 2030 2040

Change in Procedure Male Female Male Female Male Female

Use of Measured Data on Obesity at
Age 25

–0.038 –0.061 –0.067 –0.095 –0.059 –0.103

No Future Growth in Obesity Among
Initial Cohorts of 25- to 34-Year-Olds

0.000 0.000 0.004 0.009 0.029 0.040

Use of Mortality Rates With No
Control Except Age and Sex

0.017 0.010 0.026 0.015 0.026 0.012

Use of Mortality Rates Without
Inclusion of BMI at Age 25

0.026 0.056 0.095 0.164 0.199 0.289

No Exclusion Criteria Applied to
Mortality Modeling

0.046 0.072 0.099 0.141 0.145 0.202

Use of Alternative Series Translating
Lung Cancer Into All-Cause Mortality

–0.067 0.012 –0.173 –0.107 –0.322 –0.360

a A positive value means that the alternative procedure resulted in a gain in projected life expectancy
relative to the main procedure.
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Five of the six sensitivity analyses are made with respect to obesity. In our baseline
analysis, we use retrospective data as the basis for projecting age-25 BMI distribu-
tions for individuals aged 25–84 in 2010–2040. Rather than using self-reported age-
25 data, the first sensitivity analysis uses measured data derived (NHES I; 1959 from
National Health Examination Survey, Cycle I –1962), NHANES I–III (1970–1974,
1976–1980, and 1988–1994), and continuous NHANES (1999–2010) as the basis for
projecting future age-25 BMI distributions. Details are presented in Online Resource
2. Table 5 shows that results were not sensitive to whether estimates were based on
measured or self-reported data on age-25 BMI. No difference between the procedures
in any projection period was as large as 0.11 years.

Second, we examine the sensitivity of results to the projected changes in current
BMI at ages 25–34 as well as changes in age-25 BMI. Instead of extrapolating recent
trends in the BMI distribution at these ages (as in the main analysis), in the sensitivity
analysis, we assume the distribution to remain constant at its level in 2010. Table 5
shows that this change has almost no effect on results because so much of the dying is
concentrated at older ages that are unaffected by such a compositional change at
younger ages.

The other three changes in obesity procedures pertain to the regression equation
linking mortality to BMI. Model parameters are available from the authors upon
request. To show the impact of controlling educational attainment, race/ethnicity, and
smoking in the mortality estimates, we repeat the mortality analysis for obesity
without these controls. Table 5 shows that results are insensitive to this change in
procedure: the effect on e(40) never reaches 0.03 years for either sex.

The next sensitivity analysis examines the effect of omitting information about
age-25 BMI. We reestimate the regression equation predicting mortality based on
BMI after excluding terms representing BMI at age 25. Table 5 shows that including
age-25 information has an important effect on results. By 2040, losses in life
expectancy are 0.20 years greater for men and 0.29 years greater for women when
age-25 BMI is included than when it is not. These represent increases in the impact of
obesity of 37 % for men and 54 % for women relative to the estimated impacts when
age-25 BMI is omitted. We believe that these results justify the effort to include life
history information in the analysis.

The final sensitivity analysis involving obesity uses death rates by BMI estimated
on a data set that does not exclude those with emphysema and smoking-related
cancers at baseline and does not exclude the first three years of observation. The
results demonstrate what would happen to our estimates if we had not made efforts to
eliminate the biases produced by reverse causation. The effect is sizable: the use of
the exclusion criteria raises the estimated impact of changes in obesity on life
expectancy by 0.15 years for men and 0.20 years for women by 2040.

We interpret these results as evidence of the importance of correcting for reverse
causation. At the same time, they demonstrate considerable sensitivity of our projec-
tions to the set of mortality rates by BMI, about which there can be substantial
disagreement (Preston et al. 2013).

The sensitivity analysis involving smoking uses an alternative set of relations
between lung cancer mortality and all-cause mortality. The main results presented
in this article are based on relations estimated across 21 countries from 1950 to 2006.
Fenelon and Preston (2012) instead estimated coefficients relating lung cancer to all-
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cause mortality that are based on variations across the 50 states of the United States
between 1996 and 2004; coefficients predicting mortality from other causes of death
on the basis of lung cancer mortality were very similar for men to those in Preston
et al. (2011), but they were lower for women at younger ages.8

Results in Table 5 show that the sensitivity of results is minor for the first 10 years of
projection, modest for the second 10 years, and sizable by 2040. Of the projected 1.52
years of gain in life expectancy from reductions in smoking by 2040 for males in
Table 4, 0.32 years would be eliminated if the alternative relations were used. Of the
0.85-year gain for women, 0.36 years would be eliminated if the alternative relations are
used. The alternative results have the virtue of being based on contemporary relations in
the United States, but the main results are based on many more data points. We believe
that the comparison of the two approaches provides a realistic picture of the degree of
uncertainty in the smoking results: they are clearly less robust than the obesity results.
However, using either the main approach or the alternative, declines in smoking are
expected to produce substantial gains in life expectancy by 2040.

Conclusion

The combined effects of past and future changes in obesity and smoking are likely to
result in an improvement in U.S. life expectancy over the next 30 years. This
improvement occurs because the advantages of reductions in smoking outweigh the
penalty imposed by increases in obesity. Over the next decade, however, the com-
bined effects are likely to produce only a very small improvement in mortality for the
combined sexes because the heaviest smoking cohorts of American women are still in
or approaching the ages of greatest vulnerability to death.

Our results differ from those of Stewart et al. (2009), who forecast that the
negative survival effects of obesity would exceed the advantages of reduced
smoking over the period 2005–2020. Some of the apparent difference in results
is a product of the different periods of analysis. We find relatively small net
effects of the two forces between 2010 and 2020; more precisely, gains in life
expectancy for men are largely offset by losses for women. It is only in the years
beyond 2020, when the advantages of reduced smoking among women start to
be fully realized, that smoking gains strongly outpace obesity losses. On the
other hand, some of the differences between our results and those of Stewart
et al. (2009) reflect a smaller role for obesity in the present estimates. The
reduced role probably results primarily from our projection of a slower increase
in obesity and our use of lower mortality risks associated with the condition.

Are the changes that we have projected large or small? One useful metric is
provided by projections made by the SSA (Bell and Miller 2005).They anticipate
that life expectancy at age 40 will grow between 2010 and 2040 by 2.55 years for
men and 2.17 years for women, somewhat smaller gains than forecast by most other
analysts (Wilmoth 2005). Relative to projections by the SSA, the mean of male and

8 Neither approach estimated a coefficient for ages 85+. Preston et al. (2011), the source of the main
analysis, used the mean coefficient at ages 70–74, 75–79, and 80–84 to apply to ages 85+. We make this
same assumption for the alternative method based on Fenelon and Preston (2012).
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female gains that we estimate from reduced smoking (1.54 years among men and 0.85
years among women) would themselves account for about one-half of the projected
mean gain in life expectancy. These gains will be partially offset by the consequences
of increases in obesity. As a percentage of the life expectancy increases projected by
the SSA, growing obesity is expected to impose a penalty of 29 % for men and 38 %
for women. These two behaviors clearly exert a major influence on American
mortality and warrant continued monitoring and analysis.
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