
Demography (2023) 60(6):1631–1648
DOI 10.1215/00703370-11053145  © 2023 The Authors
This is an open access article distributed under the terms of a Creative Commons license (CC BY-NC-ND 4.0).

ELECTRONIC SUPPLEMENTARY MATERIAL  The online version of this article (https:​/​/doi​.org​/10​.1215​/00703370​
-11053145) contains supplementary material.

Published online: 8 November 2023

Understanding Internal Migration: A Research Note Providing 
an Assessment of Migration Selection With Genetic Data

Shiro Furuya, Jihua Liu, Zhongxuan Sun, Qiongshi Lu,  
and Jason M. Fletcher

ABSTRACT  Migration is selective, resulting in inequalities between migrants and 
nonmigrants. However, investigating migration selection is empirically challenging 
because combined pre- and post-migration data are rarely available. We propose an 
alternative approach to assessing internal migration selection by integrating genetic 
data, enabling an investigation of migration selection with cross-sectional data col
lected post-migration. Using data from the UK Biobank, we utilized standard tools from 
statistical genetics to conduct a genome-wide association study (GWAS) for migration 
distance. We then calculated genetic correlations to compare GWAS results for migra
tion with those for other characteristics. Given that individual genetics are determined 
at conception, these analyses allow a unique exploration of the association between 
pre-migration characteristics and migration. Results are generally consistent with the 
healthy migrant literature: genetics correlated with longer migration distance are associ
ated with higher socioeconomic status and better health. We also extended the analysis 
to 53 traits and found novel correlations between migration and several physical health, 
mental health, personality, and sociodemographic traits.

KEYWORDS  Migration  •  Biodemography  •  Genome-wide association study  •  
UK Biobank

Introduction

Multiple theories posit that migrants are not randomly selected from a popula
tion. Examples include the healthy migrant hypothesis (Jasso et  al. 2004; Palloni 
and Arias 2004; Palloni and Morenoff 2006), Borjas’ (1987) application of the Roy 
(1951) model of selection in the economics literature to migration, and Ravenstein’s 
(1885) law of migration. One illustrative migration selection process is that skilled 
and healthy individuals are more likely to migrate than less skilled and unhealthy 
coun­ter­parts because these qual­i­ties are nec­es­sary for the ben­e­fits of migra­tion to out­
weigh its economic, personal, physical, and psychological costs (see Feliciano 2020).

Much research has presented empirical evidence supporting this positive migra
tion selection. For example, immigrants in the United States, particularly long-distance  
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migrants, tend to be more educated than those remaining in their home countries  
(Feliciano 2005). Earlier research also found better health among U.S. immigrants 
relative to nonmigrants residing in countries of origin, consistent with positive health 
selectivity of migration (Bostean 2013; Crimmins et  al. 2005; Morey et  al. 2020;  
Ro et al. 2016; Rubalcava et al. 2008).1 Similarly, research in Europe has demonstrated 
that migrants have higher childhood socioeconomic status (SES) and health than non
migrants in their sending countries (Fuller-Thomson et al. 2015; Schmidt et al. 2022), 
suggesting positive migration selection. Importantly, migration selection on SES and 
health can be found in internal migration contexts (Borjas et al. 1992; Lu 2008; Nauman  
et al. 2015; Rauscher and Oh 2021; Wilding et al. 2016).2 Overall, international and 
internal migration are highly selective along many dimensions of SES and health.

Despite these established theoretical frameworks, data availability is a crucial lim
itation for studies examining migration selection. Given the effects of migration on 
migrants’ SES and health (Lu 2010), a simple comparison of SES and health between 
migrants and non­mi­grants reflects both selec­tion and cau­sa­tion of migra­tion. Innova-
tive research has examined migration selection using longitudinal data that include 
both pre- and post-migration information (Abramitzky et al. 2012; Fuller-Thomson 
et  al. 2015; Lu 2008; Nauman et  al. 2015; Rubalcava et  al. 2008), but such data 
are rarely available. This data constraint generally prevents scholars from separating 
migration selection and migration effects (Darlington et al. 2015).

The issue of data availability in migration studies goes beyond the lack of longitu
dinal data tracking migration behaviors. Prior research examining the healthy migrant 
hypothesis relied on subjective health assessments (Akresh and Frank 2008; Mehta 
and Elo 2012; Nauman et al. 2015).3 However, these mea­sures might par­tially reflect 
systematic differences in reporting tendencies between sociodemographic groups 
(Altman et al. 2016; Grol-Prokopczyk et al. 2011; Rossouw et al. 2018). An alter
native to self-assessment is biomarker data, which can represent objective measures 
of risks of future diseases (Crimmins et al. 2010; Harris and Schorpp 2018). Thus, 
biomarker measures might uncover migration selection in latent health risks that do 
not appear in subjective health assessments. This feature of biomarkers is important 
in a case such as internal migration in the United Kingdom, where migration is con
centrated among young adults (Bernard et al. 2016), who are less likely to perceive 
health issues.

We propose a novel approach to assess migration selection using a combination 
of standard genomic analysis toolkits: a genome-wide association study (GWAS)  
and genetic correlation analysis.4 We first explore genetic var­i­ants cor­re­lated with 

1  Some of these studies showed negative migration selection on self-reported health (Bostean 2013; 
Rubalcava et al. 2008).
2  For example, in the United States between 1880 and 1990, Black migrants from the South to the North 
had higher educational attainment than Black nonmigrants in the South (Tolnay 1998).
3  Some studies used biomarkers (Beltrán-Sánchez et al. 2016; Crimmins et al. 2005; Riosmena et al. 2013; 
Rubalcava et al. 2008), but their biomarker variation was limited.
4  A GWAS is a hypothesis-free scan of the genome that estimates statistical associations between each 
genetic location (variant) and an outcome of interest. Estimates from a GWAS can then be used in several 
types of downstream analysis. Genetic correlation analysis compares the similarity of GWAS estimates 
for one outcome (in this case, migration) with GWAS estimates from other outcomes (here, SES and 
health) to assess an overall genetic correlation among the outcomes. Alternatively, GWAS estimates can 
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migration through a GWAS and then use a genetic correlation analysis to assess 
whether and how these genetic variants correlated with migration are also associ
ated with SES and health. Given that skilled and healthy individuals are selected to 
migrate, migrants are expected to have genetic traits correlated with higher SES and 
better health than nonmigrants: genetic variants correlated with migration will also be 
correlated with higher SES and better health.

The framework takes advantage of the fact that genetic variants are determined at 
conception, remain unchanged throughout the life course, and thus cannot be affected 
by migration, SES, or self-assessed health.5 These qualities allow us to rule out migra
tion effects and collect these measures post-migration. The broad scope of prior genetic 
analysis also enables us to consider many traits in our genetic correlation analysis, even 
those that affect older individuals relative to our sample. Together, these methods allow 
novel correlations between migration and other traits that are not typically measured 
(or can­not be mea­sured). Additionally, future research can use our GWAS find­ings for 
migration in downstream analysis of migration in smaller datasets that contain genetic 
data, such as the Health and Retirement Study and the English Longitudinal Study of 
Aging. Furthermore, our results will directly show the role of genetics in migration 
selection, which demographers have suggested (Palloni and Arias 2004). Overall, our 
exploration of genetic correlations between migration and SES and health sheds light 
on understudied but potentially important dimensions of migration selection and inte
grates a social genomics approach into the migration literature.

Data and Methods

The UK Biobank (UKB) is a large-scale biobank study of more than 500,000 people 
that collected baseline data in 2006–2010. The UKB recruited the baseline sample 
through an invitation letter sent to individuals aged 40–69 who were living reason
ably close to one of the 22 catchment areas where UKB assessment centers were 
located (see Figure 1). The UKB is suitable for our purposes because it includes a 
large sample of genotyped individuals, allowing us to implement a GWAS. The UKB 
also collected coordinate information on places of birth and current residence (at the 
time of the survey), which are required to construct a migration measure (described 
later). Of the respondents who completed the study (n = 502,505), we excluded those 
with no migration distance data (n = 61,672) and those of non-European ancestries 
(n = 50,024). After additional quality control, 359,571 samples remained.6

be combined into a polygenic index (PGI) at the individual (respondent) level. A few studies have com
pared educational attainment PGIs between migrants and nonmigrants (Abdellaoui et al. 2022; Abdellaoui 
et al. 2019; Belsky et al. 2019; Belsky et al. 2016), but we are unaware of research performing GWAS for 
migration outcomes.
5  Migration and SES (and probably health outcomes) are distal phenotypes, suggesting that proximate 
variables mediate the associations of genetic traits with these outcomes. However, the presence of medi
ating factors does not eliminate the value of this study’s unique contributions discussed in the following 
passage in this paragraph.
6  For example, we randomly selected individuals among those in second-degree relative dyads by using 
KING (https:​/​/www​.kingrelatedness​.com​/) to calculate the genetic relatedness of all UKB respondents, as 
is standard in genetic analysis.
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We used single-nucleotide polymorphisms (SNPs) as a genetic marker.7 Our 
dependent variable is migration distance, representing the routing distance between 
the self-reported coordinates for respondent’s places of birth and current residence. 
We measured migration distance as a continuous outcome because it does not require 
an arbi­trary clas­si­fi­ca­tion of respon­dents as (inter­nal) migrants ver­sus non­mi­grants or 
long-distance versus short-distance migrants. Because preliminary analyses showed 
that more genetic variants correlated with logged migration distance than with migra
tion distance, we focus on logged migration distance.8 Additionally, we included the 
following control variables: age; sex; the type of chip used for genotyping; and the 
first 20 prin­ci­pal com­po­nents, which account for pop­u­la­tion struc­ture–related con-
founding (Price et al. 2006).

7  SNP is a genetic var­i­a­tion in a sin­gle base pair at a spe­cific loca­tion in DNA.
8  Results of non-log-transformed migra­tion dis­tance are sim­i­lar to our main find­ings (see sec­tion 2 of the 
online appendix).

Fig. 1  Distribution of logged migration distance and geographic distribution of UKB participants. The ana-
lytic sample includes those of European ancestries with migration distance data. Logged distance indicates 
log-transformed travel distance (km) between birthplace and the current place of residence. The distribu-
tion of logged migration distance is available in Figure A1.
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We performed a GWAS for logged migration distance using Hail, a software tool 
for genetic analysis (https:​/​/hail​.is​/). GWAS runs millions of regressions to investigate 
how the variation of an outcome variable is associated with each genetic variant. Fol-
lowing conventions in the GWAS literature (e.g., Loh et al. 2015), we removed SNPs 
with a missing call rate greater than 0.01, a minor allele frequency less than 0.01, and 
a Hardy–Weinberg equilibrium test p value <1.0e–6. To control type I error, we used 
genomic control estimates (i.e., intercept) in linkage disequilibrium score (LDSC) 
regression (Bulik-Sullivan, Loh et al. 2015) to inflate stan­dard errors for GWAS asso­
ci­a­tions. Next, we cal­cu­lated genetic cor­re­la­tions between our GWAS find­ings for 
logged migra­tion dis­tance and GWAS find­ings for 53 traits from other published 
studies. These traits include some genetic components that are direct (i.e., operate 
through inherited genetic variants) and some that are indirect (i.e., operate through 
the family environment) (Wu et al. 2021). This decomposition of genetic correlation 
allowed us to assess underlying mechanisms for the association between genetic var
iants and migration.9 We used LDSC to estimate genetic correlations (Bulik-Sullivan, 
Finucane et al. 2015) and adjusted the sig­nifi­cance cut­off using Bonferroni cor­rec­tion 
to account for multiple testing. GWAS summary statistics for the 53 traits are shown 
in Table A1 (tables and fig­ures des­ig­nated with an “A” are in the online appen­dix).

Results

Main Findings

Illustrating GWAS results, Figure 2 shows a Manhattan plot of 1,858 SNPs from 21 
inde­pen­dent loci that reach the genome-wide sig­nifi­cance level (p < 5.0e–8); genetic 
researchers use this very low p-value threshold to adjust for the hundreds of thou
sands of results esti­mated to con­trol for false pos­i­tive find­ings.10 These SNPs are also 
associated with several SES and health outcomes. For example, outcomes associated 
with the SNP with the lowest p value in our migration analysis include educational 
attainment (Davies et al. 2016), cognitive performance (Lee et al. 2018), and anorexia 
nervosa (Peyrot and Price 2021). A measure of overall genetic contribution (SNP her
itability) to logged migration distance is 0.0629 (standard error [SE] = 0.003): 6% of 
the variation is from commonly measured genetic variation.11

Figure 3 and Table A2 summarize genetic correlations (rg) between logged migra
tion dis­tance and 53 traits. We find a strong pos­i­tive genetic cor­re­la­tion between 
logged migration distance and educational attainment (rg = 0.886); this level of 
genetic correlation is among the highest reported in the literature, exceeding that for 

9  One way to evaluate underlying mechanisms is to conduct a mediation analysis. However, in our case, a 
con­ven­tional medi­a­tion anal­y­sis is dif­fi­cult to imple­ment because we do not know the tim­ing of migra­tion. 
We therefore assess underlying mechanisms by decomposing genetic correlations into direct and indirect 
components.
10  See Figure A2 for the quantile–quantile plot.
11  To test potential mechanisms of the association between genetic variants and migration distance, we 
assessed whether sex and birth cohort (the 1940s, 1950s, and 1960s cohorts) moderate this relationship. 
We found no empir­i­cal evi­dence that these axes of social strat­i­fi­ca­tion mod­er­ate the rela­tion­ship between 
genetic variants and migration distance (results available upon request).
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Fig. 3  Genetic correlations for logged migration distance. Circles and error bars indicate genetic correla-
tion estimates and standard errors. Correlations significant at the 5% level after Bonferroni correction are 
highlighted as open circles. ADHD = attention-deficit/hyperactivity disorder. LDL-C and HDL-C = low- 
and high-density lipoprotein cholesterol, respectively.
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cognitive performance. Further, our results of direct (i.e., own genetics) and indirect 
(i.e., parental/family genetics) components demonstrate strong genetic correlations 
with both dimensions but indicate a stronger genetic correlation with the indirect 
component (rg = 0.856) than with the direct component (rg = 0.624).

The results also reveal sig­nifi­cant neg­a­tive genetic cor­re­la­tions with sev­eral 
health-related issues, including coronary artery disease, Type 2 diabetes, major 
depres­sive dis­or­der, neu­rot­i­cism, and atten­tion-defi­cit/hyper­ac­tiv­ity dis­or­der. Among 
fer­til­ity-related out­comes, genetic cor­re­la­tions with age at first birth and age at men­
opause are positive; the genetic correlation with the number of children is negative. 
Finally, several genetic correlations with health outcomes were unanticipated. Specif-
ically, positive genetic correlations with anorexia nervosa, autism spectrum disorder, 
and bipolar disorder suggest higher genetic risks of these mental disorders among 
migrants relative to nonmigrants.12

Robustness Checks

Additional GWAS and Genetic Correlation Analyses

We conducted several robustness checks to assess the impacts of UKB’s sampling 
design on our find­ings. Specifically, we inves­ti­gated (1) the con­se­quences of the over­
representation of well-educated UK residents in the UKB (Munafò et al. 2018), (2) 
the impacts of the potential oversampling of health professionals,13 and (3) the effects 
of sam­pling selec­tion based on migra­tion dis­tance. To test the robust­ness of our find­
ings on the first issue, we reimplemented GWAS while exclud­ing those with pro­fes­
sional education and college graduates. Our goal was to reduce the data’s cases of 
migration for pursuing higher education. Similarly, we also ran GWAS excluding 
health professionals to eliminate the impacts of health professionals’ migration into 
places around the medical assessment centers.14 Regarding the third issue, we split 
the 22 catch­ment areas into two groups on the basis of place-spe­cific median migra­
tion distance and performed GWAS separately for these two groups. A key sampling 
feature of the UKB is that only people living close to one of 22 assessment cen
ters were asked to participate. This feature may truncate some internal migration 
dis­tances in the full UK pop­u­la­tion. We split the data based on the place-spe­cific 
migration distance distributions and examined the similarity of the results between 
the two subsamples. That is, we further truncated migration distance in each sub
sample and explored whether doing so would shape our results to gauge whether the 

12  Similarly, Figure A3 shows that genetic correlations between educational attainment and these health 
measures are also positive.
13  We expect health professionals to be overrepresented in the sample because the UKB recruited individ
uals living close to one of 22 medical assessment centers.
14  We iden­ti­fied health pro­fes­sion­als using an employ­ment his­tory ques­tion in the UKB inquir­ing about 
paid jobs and appren­tice­ships held, in align­ment with the inter­na­tional clas­si­fi­ca­tion of health work­ers 
provided by the World Health Organization (https:​/​/www​.who​.int​/publications​/m​/item​/classifying​-health​
-workers). We then excluded individuals categorized as health professionals and health associate profes
sion­als. Table A3 sum­ma­rizes the job code in the UKB and the occu­pa­tional clas­si­fi­ca­tion.
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unknown truncation due to the UKB sampling strategy is likely to have affected our 
main results.

Figures A4–A7 show that genetic correlations between migration distance and 53 
traits are generally consistent across the ways we select the analytic sample. The cor
re­la­tion coef­fi­cient of genetic cor­re­la­tions between the sam­ple with and with­out pro­
fes­sional or col­lege edu­ca­tion is 0.98. Likewise, the cor­re­la­tion coef­fi­cient of genetic 
correlations between the sample with and without health professionals is 0.99. Fur-
ther, the cor­re­la­tion coef­fi­cient of genetic cor­re­la­tions between our two sub­sam­ples 
based on migration distance is 0.97. Regression slopes in Figures A5–A7 are close to 
1, ranging from 0.943 (SE = 0.022) to 1.165 (SE = 0.031). Hence, these results do not 
present empirical evidence that sampling selection issues in the UKB substantially 
alter our find­ings.

Within-Sibling Analyses

Differences in genetic ancestries have unig­nor­able impacts on GWAS find­ings when 
genetic ancestries affect genetic variants and an outcome of interest. To account 
for this pop­u­la­tion strat­i­fi­ca­tion issue, we restricted the ana­lytic sam­ple to indi­vid­
uals of European ancestries and included genetic principal components in GWAS. 
However, prin­ci­pal com­po­nents might not fully account for pop­u­la­tion strat­i­fi­ca­tion 
(Howe et al. 2022). To fur­ther elim­i­nate the impacts of pop­u­la­tion strat­i­fi­ca­tion on 
our main find­ings, we conducted within-sib­ling GWAS, which com­pares genetic 
variants between siblings. This approach ensures that differences in genetic vari
ants are not due to pop­u­la­tion strat­i­fi­ca­tion because sib­lings share genetic ancestries 
(Raffington et al. 2020).

Although within-sibling GWAS effectively reduces the threat of population strat
i­fi­ca­tion, this approach has lim­i­ta­tions. First, within-sib­ling GWAS includes only 
UKB respondents whose siblings also participated in the UKB and therefore has 
a much smaller sample size (16,220 pairs and 32,440 individuals) than population 
GWAS. Second, within-sib­ling GWAS accounts for not only pop­u­la­tion strat­i­fi­ca­
tion but also any other shared traits between siblings, such as the family of origin’s 
socioeconomic background and childhood neighborhood environments. Because 
these shared traits explain some variance of an outcome measure, the remaining 
variance that genetic predispositions can explain is small in within-sibling GWAS. 
These limitations result in larger standard errors for genetic correlations in within-
sibling GWAS than for population GWAS. Therefore, we primarily focused on sign 
concordance of genetic covariances for associations between genetic variants cor
related with migration distance and other phenotypes. Finally, differences between 
population and within-sibling GWAS should be interpreted with caution. Consistent 
signs between pop­u­la­tion and within-sib­ling GWAS sup­port our main find­ings with 
the least threat of pop­u­la­tion strat­i­fi­ca­tion. However, dif­fer­ent signs do not imply 
that pop­u­la­tion strat­i­fi­ca­tion induces biased esti­ma­tes in pop­u­la­tion GWAS because 
the within-sibling comparison accounts for all shared traits between siblings, includ
ing but not lim­ited to pop­u­la­tion strat­i­fi­ca­tion.

Results of sign tests are presented in Table 1. Among the 33 traits that reached 
the 5% sig­nifi­cance level after Bonferroni cor­rec­tion in the genetic cor­re­la­tion 
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analysis, genetic covariances of 28 traits (85% of the 33 traits) from within-sibling 
GWAS have signs consistent with those from population GWAS (p = 6.6 i10−5,  
binomial test).15 These results sug­gest that sig­nifi­cant genetic cor­re­la­tions for 

15  Because there are positive and negative signs, we expect that half of the genetic covariances from 
within-sibling GWAS show inconsistent signs with the genetic covariances from population GWAS if the 
signs of genetic covariances from within-sibling GWAS are random. Therefore, the null hypothesis in this 

Table 1  Estimated genetic covariances from population and within-sibling GWAS

Trait

Genetic Covariance

Same Sign?Population GWAS Within-Sibling GWAS

ADHD −0.0580 (0.0052)*** −0.0154 (0.0128) Yes
Age at First Birth 0.0352 (0.0022)*** 0.0087 (0.0063) Yes
Anorexia 0.0213 (0.0047)*** 0.0121 (0.0127) Yes
Anxiety Disorder −0.0289 (0.0062)*** −0.0279 (0.0189) Yes
Autism Spectrum Disorder 0.0223 (0.0059)*** −0.0146 (0.0200) No
Autoimmune Thyroid Disease −0.0116 (0.0033)*** −0.0099 (0.0135) Yes
Bipolar Disorder 0.0288 (0.0050)*** 0.0001 (0.0151) Yes
Birth Weight 0.0091 (0.0025)*** 0.0039 (0.0073) Yes
Body Mass Index −0.0300 (0.0025)*** 0.0060 (0.0072) No
Cigarettes per Day −0.0153 (0.0021)*** −0.0015 (0.0063) Yes
Cognitive Performance 0.0836 (0.0035)*** 0.0188 (0.0081)* Yes
Coronary Artery Disease −0.0142 (0.0015)*** −0.0014 (0.0048) Yes
Dark Brown Hair 0.0105 (0.0026)*** 0.0015 (0.0072) Yes
Educational Attainment 0.0887 (0.0030)*** 0.0273 (0.0056)*** Yes
Educational Attainment, Direct 0.0428 (0.0063)*** 0.0215 (0.0196) Yes
Educational Attainment, Indirect 0.0498 (0.0062)*** 0.0140 (0.0162) Yes
HDL-C 0.0207 (0.0027)*** −0.0033 (0.0088) No
Height 0.0279 (0.0041)*** −0.0116 (0.0112) No
Income 0.0544 (0.0027)*** 0.0138 (0.0064)* Yes
Intracranial Volume 0.0401 (0.0060)*** 0.0287 (0.0182) Yes
LDL-C −0.0122 (0.0032)*** −0.0136 (0.0108) Yes
Major Depressive Disorder −0.0111 (0.0018)*** −0.0132 (0.0054)* Yes
Menopause Age 0.0202 (0.0040)*** 0.0148 (0.0104) Yes
Neuroticism −0.0209 (0.0028)*** −0.0203 (0.0093)* Yes
Number of Children −0.0082 (0.0018)*** −0.0018 (0.0048) Yes
Openness to Experience 0.0329 (0.0072)*** 0.0228 (0.0218) Yes
Rheumatoid Arthritis −0.0248 (0.0037)*** −0.0218 (0.0125)† Yes
Smoking Cessation −0.0225 (0.0017)*** −0.0091 (0.0048)† Yes
Smoking Initiation −0.0222 (0.0019)*** −0.0064 (0.0044) Yes
Smoking Initiation Age 0.0291 (0.0021)*** 0.0041 (0.0058) Yes
Subjective Well-being 0.0058 (0.0017)*** 0.0020 (0.0057) Yes
Triglycerides −0.0203 (0.0035)*** −0.0032 (0.0112) Yes
Type 2 Diabetes −0.0148 (0.0026)*** 0.0036 (0.0076) No

Notes: Data are restricted to the 33 phe­no­types show­ing sig­nifi­cant genetic cor­re­la­tions with migra­tion 
distance after Bonferroni correction in the main analysis. Standard errors are shown in parentheses. 
ADHD = atten­tion-defi­cit/hyper­ac­tiv­ity dis­or­der. LDL-C and HDL-C = low- and high-density lipoprotein 
cholesterol, respectively.
†p < .10; *p < .05; ***p < .001
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migration distance with SES and health in the main analyses are generally robust 
to pop­u­la­tion strat­i­fi­ca­tion.

By con­trast, the signs of genetic covari­ances of the other five traits from within-
sibling GWAS differ from those in population GWAS. These traits are autism spec
trum disorder, body mass index, HDL cholesterol, height, and Type 2 diabetes. 
Although these dif­fer­ences are prob­a­bly due to pop­u­la­tion strat­i­fi­ca­tion in pop­u­la­tion 
GWAS, we cannot reject an alternative scenario that other shared traits between sib
lings alter the signs of genetic covariances of these characteristics. Furthermore, these 
genetic covari­ances are not sta­tis­ti­cally sig­nifi­cant even with­out Bonferroni cor­rec­
tion, suggesting that the inconsistent signs may result from low statistical power and 
imprecise estimation. Because most of the traits show consistent directions of genetic 
covariances across within-sibling and population GWAS, we conclude that within-
sib­ling GWAS does not pres­ent empir­i­cal evi­dence cast­ing doubt on our main find­
ings in the genetic correlation analysis.

Analyses With U.S. Data

To fur­ther val­i­date our find­ings, we conducted sim­i­lar ana­ly­ses with dif­fer­ent sam­
ples. However, we are unaware of datasets that provide a migration distance measure 
and genetic data with a suf­fi­ciently large sam­ple size to imple­ment a GWAS and 
genetic correlation analysis.16 As an alter­na­tive, we used our GWAS find­ings to cre­ate 
a migration distance polygenic index (PGI): a summary measure representing cumu
lative correlations of independent genomic loci of small correlations with migration 
distance. We then assessed how migration distance PGI is associated with migration 
distance, health, SES, and skills in a U.S. population.17 On the basis of our main find­
ings, we expected that those with genetic variants correlated with longer migration 
distances (i.e., higher migration distance PGIs) move longer distances, are healthier, 
and have more socioeconomic resources than those with lower migration distance 
PGIs. Such results would pro­vide addi­tional sup­port val­i­dat­ing the find­ings in the 
GWAS and genetic correlation analysis.

We analyzed data from the National Longitudinal Study of Adolescent to Adult 
Health (Add Health) and the Health and Retirement Study (HRS), which collected 
genetic data. These datasets allowed us to construct migration distance PGIs. Fur-
ther, because these datasets cover different age and birth cohorts, we could assess 
whether the associations of the migration distance PGI with health, SES, and skills 
depend on these demographic characteristics. We used Add Health Wave I to explore 

binomial test is that the probability that the signs of genetic covariances from within-sibling GWAS are 
consistent with those from population GWAS is 0.5.
16  For example, Add Health provides migration distance information and genetic data, but the sample size 
(N  =  4,508 after quality checks) is too small to run a GWAS and genetic correlation analysis.
17  To create the migration distance PGI, we used the results of the logged migration distance GWAS of 
UKB data. Following the standard procedure to construct PGI, we clumped SNPs using Phase 3 European 
samples from the 1,000 Genomes Project as linkage disequilibrium reference. The linkage disequilibrium 
window size and a pairwise R2 threshold were set at 1 megabase (Mb) and 0.1, respectively. We did not use 
p value thresholding for variant selection. We calculated migration distance PGI with PRSice-2 software 
(Choi and O’Reilly 2019) and standardized with a mean of 0 and a variance of 1 in downstream analyses.
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the association between the migration distance PGI and phenotypic traits among 
adolescents.18 Additionally, we analyzed Add Health Wave IV and the 2012 round of 
HRS, which collected data for young adults and older people, because these survey 
waves collected completed genetic data.

Migration distance is measured by the distance of locations between Waves I and 
III in Add Health.19 We created health, SES, and skill measures by using Add Health 
Waves I and IV and the 2012 round of HRS. Our health outcome measures include 
self-reported health, height, body mass index, and depression (assessed with the Cen-
ter for Epidemiologic Studies Depression Scale). For Wave I respondents, we also 
used picture vocabulary test scores and grades in English, math, social studies, and sci
ence to measure respondents’ abilities and skills. With Add Health Wave IV and HRS 
data, we measured respondents’ SES as educational attainment and log-transformed 
individual and household income (Table A4 details the operationalizations of these 
outcome measures).

Table 2 summarizes the results of the association between migration distance PGI 
and the location distance between Add Health Waves I and III. Net of age, sex, and 
the first 20 prin­ci­pal com­po­nents, a higher migra­tion dis­tance PGI is sig­nifi­cantly 
asso­ci­ated with a lon­ger migra­tion dis­tance. This find­ing sug­gests that genetic var­i­
ants correlated with a longer migration distance among the UKB participants are also 
associated with a longer migration distance among the Add Health participants.

We then examined the associations with health, SES, and skills. Table 3 demon
strates that net of age, sex, and the first 20 prin­ci­pal com­po­nents, a higher migra­tion 
distance PGI is associated with better health and higher skills and SES, regardless of 
age groups and birth cohorts. These results are consistent with the positive genetic 

18  Add Health Wave II also provides data for adolescents, but the sample size is somewhat smaller in Wave 
II than Wave I.
19  Add Health also provides the location distance between Waves I and II and between Waves II and III. 
However, only small variations in the location distance exist between Waves I and II because Wave II 
collected data one or two years after Wave I. Further, the location distances between Waves II and III are 
similar to those between Waves I and III, but Wave II has fewer observations than Wave I. Therefore, we 
used the location distance between Waves I and III.

Table 2  Estimated relationships between logged migration distance PGI and geographic mobility  
distance in Add Health Waves I and III

Variable

Distance Between Waves I and III

Standardized Log-Transformed

Migration PGI (standardized) 0.036* 0.148†

(0.018) (0.079)
Number of Observations 4,688 4,688

Notes: Logged migration distance PGI is standardized at a mean of 0 and standard deviation of 1. The 
sample is restricted to those of European ancestries. Heteroskedasticity-robust standard errors are shown 
in paren­the­ses. Additional con­trols include the first 20 prin­ci­pal com­po­nents, a dummy var­i­able for age in 
Wave III, and a dummy variable for sex. Additional controls are not shown.
†p < .10; *p < .05
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cor­re­la­tions between migra­tion dis­tance and health, SES, and skills in the main find­
ings. Overall, the additional analyses with two U.S. datasets suggest that our UKB 
results generalize to other contexts.

Discussion

This study provides novel assessments of migration selection using genetic analytic 
tools. We found many genetic variants associated with logged migration distance. 
Because genetic variants are not affected by migration, these results provide direct 

Table 3  Estimated relationships between logged migration distance PGI and phenotypes in the U.S. data

Variable

Add Health Wave I 
(adolescents) 

Add Health Wave IV
(adults) 

HRS
(older adults)

(1) (2) (3)

A. Health Outcomes
  Self-reported health 0.039** 0.062*** 0.137***
  (0.013) (0.013) (0.020)
  Height 0.012** 0.013*** 0.004**
  (0.004) (0.003) (0.001)
  Body mass index −0.182** −0.458*** −0.199†

  (0.062) (0.105) (0.111)
  Depression (CES-D scale) −0.381*** −0.196** −0.144***
  (0.106) (0.069) (0.037)
B. SES and Skills
  Completed high school — 0.016*** 0.051***
  — (0.003) (0.006)
  Completed four-year college — 0.075*** 0.105***
  — (0.007) (0.008)
  Logged personal income — 0.163*** 0.154*
  — (0.040) (0.073)
  Logged household income — 0.055*** 0.134***
  — (0.012) (0.019)
  Picture vocabulary test score 1.969*** — —
  (0.174) — —
  Grade in English 0.090*** — —
  (0.017) — —
  Grade in math 0.100*** — —
  (0.018) — —
  Grade in social studies 0.123*** — —
  (0.019) — —
  Grade in science 0.127*** — —

(0.018) — —

Notes: Logged migration distance PGI is standardized at a mean of 0 and a standard deviation of 1. The 
sample is restricted to those of European ancestries. Heteroskedasticity-robust standard errors are shown 
in paren­the­ses. Additional con­trols include the first 20 prin­ci­pal com­po­nents, the age fixed effect, and a 
dummy variable for sex. Additional controls are not shown. CES-D = Center for Epidemiologic Studies 
Depression Scale.
†p < .10; *p < .05; **p < .01; ***p < .001
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evidence of genetic migration selection: those with certain genetic variants are more 
likely to migrate than those with­out these var­i­ants. These find­ings sup­port Palloni and 
Arias’ (2004) speculation of the presence of migration selection at the genetic level.

Further, we found that genetic variants correlated with migration distance are 
also associated with many dimensions of SES and health outcomes. These results 
imply that migration selection at the genetic level is tied to many other character
istics. The positive genetic correlations with educational attainment, income, and 
cognitive performance suggest that skilled individuals are more likely to migrate 
and that long-distance migrants pursue better educational and occupational opportu
nities. These results show that the Roy model (Borjas 1987; Borjas et al. 1992) and 
the law of migration (Ravenstein 1885) have impli­ca­tions for the genetic pro­files of 
migrants compared with nonmigrants. In the case of educational attainment–related 
genetics, our decomposition of genetic correlations into direct and indirect compo
nents provides some insights into mechanisms: genetics correlated with family envi
ronments related to higher educational attainment contribute to genetic migration 
selection more than genetics correlated with own skills and abilities for successful 
educational attainment.

One major advantage of genetic measures is the wide coverage of genetic corre
lations, especially with health outcomes. This feature allows us to examine a broader 
set of outcomes that are rarely available in most datasets. Indeed, this wide cover
age in genetic correlations provides several important theoretical implications for 
the healthy migrant hypothesis (Jasso et  al. 2004; Palloni and Arias 2004; Palloni 
and Morenoff 2006). First, the healthy migrant hypothesis is valid for health condi
tions and risks that people may not perceive before migration. For example, genetic 
correlations with chronic diseases usually appearing at middle or older ages (e.g., 
coronary artery disease) uncover the likelihood of migration selection in latent health 
risks, given that internal migration in the United Kingdom is concentrated at young 
adult ages (Bernard et al. 2016). By con­trast, our find­ings also pro­vide nuance to the 
healthy migrant hypoth­e­sis and sug­gest the need for addi­tional research. Specifically, 
sig­nifi­cant pos­i­tive genetic cor­re­la­tions between migra­tion dis­tance and bipo­lar dis­or­
der and anorexia nervosa suggest that those with higher genetic risks of these mental 
conditions are more likely to migrate. These genetic correlations are counterintuitive 
to the theoretical explanation that healthy individuals (in this case, those with lower 
risks of mental disorders) are more likely to migrate. One possible interpretation 
for these unanticipated results is that those with a high genetic risk of these mental 
conditions may be skilled individuals. This scenario is consistent with our genetic 
correlations between educational attainment and these mental disorders, as well as 
prior epidemiological research (MacCabe et al. 2010; Tiihonen et al. 2005). Because 
skilled individuals are more likely to migrate, those with genetic variants correlated 
with a higher risk of these mental disorders may also be more likely to migrate. Over-
all, these find­ings lead us to hypoth­e­size that the healthy migrant hypoth­e­sis may not 
apply to some mental conditions, which are positively correlated with SES.

We acknowledge several limitations in this study. First, UKB is not a nationally 
representative survey and does not provide sampling weights to adjust the unique 
sampling strategy. Although we conducted many robustness checks to assess the 
potential impacts of sampling selection, subsequent research with large, nation
ally representative data can further explore the consequences of this limitation. 
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Second, we excluded respondents of non-European ancestries to increase ancestral 
homo­ge­ne­ity. This exclu­sion lim­its the gen­er­al­iz­abil­ity of our find­ings of genetic 
migration selection. Finally, the genetic correlation analysis does not fully reveal 
the underlying mechanisms of migration selection. The result of a higher genetic 
correlation with the indirect component of educational attainment than with the 
direct component provides insights into the mechanisms, but we remain uncertain 
about what spe­cific fam­ily or nur­tur­ing envi­ron­ments con­trib­ute to migra­tion selec­
tion by educational attainment.

Despite these limitations, our study makes valuable contributions to the study of 
migration selection, which is typically constrained by data availability. By leverag
ing the unique feature of genetic measurements, we documented the presence of 
migration selection at the genetic level. Although we showed that genetic migration 
selection is generally consistent with theories and empirical evidence in migration 
selection, we also found genetic migration selection counter to our theoretical expec
tation. These unanticipated results generate novel hypotheses, and subsequent tests 
of the hypoth­e­sis will shed light on understudied aspects of migra­tion selec­tion. ■
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